Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models

Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-11, Vol.22 (11), p.2278-2281
Hauptverfasser: Raj, Vishnu, Kalyani, Sheetal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2281
container_issue 11
container_start_page 2278
container_title IEEE communications letters
container_volume 22
creator Raj, Vishnu
Kalyani, Sheetal
description Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.
doi_str_mv 10.1109/LCOMM.2018.2868103
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2132078376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452950</ieee_id><sourcerecordid>2132078376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPtom4QbjU-o0DkM7Vm7rrh2lLUl72L8nYxMX25L92q8fQq45m3HOzF0yXy4WM8G4ngkda87kCZnwKNKB8OHU10ybQCmjz8mFc1vGmBYRn5D1I-Rfve162MBQtxu6qmw3bio6VEgfantPnxB7miDYdt-GgX5UO1fn0NAEdmjpuh6qbhzovIK2xYYuugIbd0nOSmgcXh3zlHy-PK_mb0GyfH2fPyRBLkw0BDKMw7jkykQ6QxF7gyBkyAwqoVRRyCwEyHLBTVwWRhoGqBlkISoAiVJzOSW3h73-h58R3ZBuu9G2_mQquBRMaaliPyUOU7ntnLNYpr2tv8HuUs7SPcD0D2C6B5geAXrRzUFUI-K_QIeRd87kL4cGa50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132078376</pqid></control><display><type>article</type><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><source>IEEE Electronic Library (IEL)</source><creator>Raj, Vishnu ; Kalyani, Sheetal</creator><creatorcontrib>Raj, Vishnu ; Kalyani, Sheetal</creatorcontrib><description>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2868103</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Channel models ; Communication systems ; Communications systems ; Computer simulation ; Deep learning ; Machine learning ; Neural networks ; optimization ; Perturbation methods ; Receivers ; Training ; Transmitters</subject><ispartof>IEEE communications letters, 2018-11, Vol.22 (11), p.2278-2281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</citedby><cites>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</cites><orcidid>0000-0002-6939-8884 ; 0000-0002-1530-0140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8452950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raj, Vishnu</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</description><subject>Artificial neural networks</subject><subject>Channel models</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Perturbation methods</subject><subject>Receivers</subject><subject>Training</subject><subject>Transmitters</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPtom4QbjU-o0DkM7Vm7rrh2lLUl72L8nYxMX25L92q8fQq45m3HOzF0yXy4WM8G4ngkda87kCZnwKNKB8OHU10ybQCmjz8mFc1vGmBYRn5D1I-Rfve162MBQtxu6qmw3bio6VEgfantPnxB7miDYdt-GgX5UO1fn0NAEdmjpuh6qbhzovIK2xYYuugIbd0nOSmgcXh3zlHy-PK_mb0GyfH2fPyRBLkw0BDKMw7jkykQ6QxF7gyBkyAwqoVRRyCwEyHLBTVwWRhoGqBlkISoAiVJzOSW3h73-h58R3ZBuu9G2_mQquBRMaaliPyUOU7ntnLNYpr2tv8HuUs7SPcD0D2C6B5geAXrRzUFUI-K_QIeRd87kL4cGa50</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Raj, Vishnu</creator><creator>Kalyani, Sheetal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6939-8884</orcidid><orcidid>https://orcid.org/0000-0002-1530-0140</orcidid></search><sort><creationdate>20181101</creationdate><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><author>Raj, Vishnu ; Kalyani, Sheetal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Channel models</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Perturbation methods</topic><topic>Receivers</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Vishnu</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raj, Vishnu</au><au>Kalyani, Sheetal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>22</volume><issue>11</issue><spage>2278</spage><epage>2281</epage><pages>2278-2281</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2868103</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6939-8884</orcidid><orcidid>https://orcid.org/0000-0002-1530-0140</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-11, Vol.22 (11), p.2278-2281
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2132078376
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Channel models
Communication systems
Communications systems
Computer simulation
Deep learning
Machine learning
Neural networks
optimization
Perturbation methods
Receivers
Training
Transmitters
title Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backpropagating%20Through%20the%20Air:%20Deep%20Learning%20at%20Physical%20Layer%20Without%20Channel%20Models&rft.jtitle=IEEE%20communications%20letters&rft.au=Raj,%20Vishnu&rft.date=2018-11-01&rft.volume=22&rft.issue=11&rft.spage=2278&rft.epage=2281&rft.pages=2278-2281&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2868103&rft_dat=%3Cproquest_RIE%3E2132078376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132078376&rft_id=info:pmid/&rft_ieee_id=8452950&rfr_iscdi=true