Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models
Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availabil...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2018-11, Vol.22 (11), p.2278-2281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2281 |
---|---|
container_issue | 11 |
container_start_page | 2278 |
container_title | IEEE communications letters |
container_volume | 22 |
creator | Raj, Vishnu Kalyani, Sheetal |
description | Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models. |
doi_str_mv | 10.1109/LCOMM.2018.2868103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2132078376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452950</ieee_id><sourcerecordid>2132078376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPtom4QbjU-o0DkM7Vm7rrh2lLUl72L8nYxMX25L92q8fQq45m3HOzF0yXy4WM8G4ngkda87kCZnwKNKB8OHU10ybQCmjz8mFc1vGmBYRn5D1I-Rfve162MBQtxu6qmw3bio6VEgfantPnxB7miDYdt-GgX5UO1fn0NAEdmjpuh6qbhzovIK2xYYuugIbd0nOSmgcXh3zlHy-PK_mb0GyfH2fPyRBLkw0BDKMw7jkykQ6QxF7gyBkyAwqoVRRyCwEyHLBTVwWRhoGqBlkISoAiVJzOSW3h73-h58R3ZBuu9G2_mQquBRMaaliPyUOU7ntnLNYpr2tv8HuUs7SPcD0D2C6B5geAXrRzUFUI-K_QIeRd87kL4cGa50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132078376</pqid></control><display><type>article</type><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><source>IEEE Electronic Library (IEL)</source><creator>Raj, Vishnu ; Kalyani, Sheetal</creator><creatorcontrib>Raj, Vishnu ; Kalyani, Sheetal</creatorcontrib><description>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2868103</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Channel models ; Communication systems ; Communications systems ; Computer simulation ; Deep learning ; Machine learning ; Neural networks ; optimization ; Perturbation methods ; Receivers ; Training ; Transmitters</subject><ispartof>IEEE communications letters, 2018-11, Vol.22 (11), p.2278-2281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</citedby><cites>FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</cites><orcidid>0000-0002-6939-8884 ; 0000-0002-1530-0140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8452950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raj, Vishnu</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</description><subject>Artificial neural networks</subject><subject>Channel models</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Perturbation methods</subject><subject>Receivers</subject><subject>Training</subject><subject>Transmitters</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPtom4QbjU-o0DkM7Vm7rrh2lLUl72L8nYxMX25L92q8fQq45m3HOzF0yXy4WM8G4ngkda87kCZnwKNKB8OHU10ybQCmjz8mFc1vGmBYRn5D1I-Rfve162MBQtxu6qmw3bio6VEgfantPnxB7miDYdt-GgX5UO1fn0NAEdmjpuh6qbhzovIK2xYYuugIbd0nOSmgcXh3zlHy-PK_mb0GyfH2fPyRBLkw0BDKMw7jkykQ6QxF7gyBkyAwqoVRRyCwEyHLBTVwWRhoGqBlkISoAiVJzOSW3h73-h58R3ZBuu9G2_mQquBRMaaliPyUOU7ntnLNYpr2tv8HuUs7SPcD0D2C6B5geAXrRzUFUI-K_QIeRd87kL4cGa50</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Raj, Vishnu</creator><creator>Kalyani, Sheetal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6939-8884</orcidid><orcidid>https://orcid.org/0000-0002-1530-0140</orcidid></search><sort><creationdate>20181101</creationdate><title>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</title><author>Raj, Vishnu ; Kalyani, Sheetal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-34646f17958be26779a23409e7277dd3b4aabc2196fd9390ae80ab4e7aa3e3813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Channel models</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Perturbation methods</topic><topic>Receivers</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Vishnu</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raj, Vishnu</au><au>Kalyani, Sheetal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>22</volume><issue>11</issue><spage>2278</spage><epage>2281</epage><pages>2278-2281</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2868103</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6939-8884</orcidid><orcidid>https://orcid.org/0000-0002-1530-0140</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2018-11, Vol.22 (11), p.2278-2281 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2132078376 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Channel models Communication systems Communications systems Computer simulation Deep learning Machine learning Neural networks optimization Perturbation methods Receivers Training Transmitters |
title | Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backpropagating%20Through%20the%20Air:%20Deep%20Learning%20at%20Physical%20Layer%20Without%20Channel%20Models&rft.jtitle=IEEE%20communications%20letters&rft.au=Raj,%20Vishnu&rft.date=2018-11-01&rft.volume=22&rft.issue=11&rft.spage=2278&rft.epage=2281&rft.pages=2278-2281&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2868103&rft_dat=%3Cproquest_RIE%3E2132078376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132078376&rft_id=info:pmid/&rft_ieee_id=8452950&rfr_iscdi=true |