Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains

Let Hn be a linear crossed hexagonal chain with n crossed hexagonals. In this article, we find that the Laplacian (resp. normalized Laplacian) spectrum of Hn consists of the eigenvalues of a symmetric tridiagonal matrix of order 2n + 1 and a diagonal matrix of order 2n + 1. Based on the properties o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2018-12, Vol.118 (24), p.n/a
Hauptverfasser: Pan, Yingui, Li, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title International journal of quantum chemistry
container_volume 118
creator Pan, Yingui
Li, Jianping
description Let Hn be a linear crossed hexagonal chain with n crossed hexagonals. In this article, we find that the Laplacian (resp. normalized Laplacian) spectrum of Hn consists of the eigenvalues of a symmetric tridiagonal matrix of order 2n + 1 and a diagonal matrix of order 2n + 1. Based on the properties of these matrices, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index and the number of spanning trees of Hn are derived. Finally, we show that the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index of Hn is approximately one quarter of its Wiener (resp. Gutman) index. Based on the decomposition theorem of the Laplacian (resp. normalized Laplacian) polynomial, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index, and the number of spanning trees are derived. In addition, the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index is found to be approximately one quarter of its Wiener (resp. Gutman) index.
doi_str_mv 10.1002/qua.25787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131946269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131946269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-c75ef270253b82b48f29312b3b1687991a35a5a8b406548ca0883b4cd02c25be3</originalsourceid><addsrcrecordid>eNp10N1KwzAUB_AgCs7phW8Q8EqwWz7aJL0c4hcORHDgXUjTdM3o0i5pdbvzEXxGn8S6eiV4dS7O7xz-_AE4x2iCESLTTacmJOGCH4ARRimPYoZfD8Go36GIMySOwUkIK4QQo4yPgH-0XpdlXRTQutxsr-C6q1rbVFar1r4ZmJulN-br4_MPhMrlMDTKOeuWsO1NgHUB29LAyjqjPNS-DsHksDRbtaydqqAulXXhFBwVqgrm7HeOweL25uX6Ppo_3T1cz-aRppTwSPPEFIQjktBMkCwWBUkpJhnNMBM8TbGiiUqUyGLEklhohYSgWaxzRDRJMkPH4GL42_h605nQylXd-T5HkARTnMaMsLRXl4Pax_WmkI23a-V3EiP5U6nsK5X7Sns7Hey7rczufyifF7Ph4huSL3ni</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131946269</pqid></control><display><type>article</type><title>Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains</title><source>Wiley Online Library All Journals</source><creator>Pan, Yingui ; Li, Jianping</creator><creatorcontrib>Pan, Yingui ; Li, Jianping</creatorcontrib><description>Let Hn be a linear crossed hexagonal chain with n crossed hexagonals. In this article, we find that the Laplacian (resp. normalized Laplacian) spectrum of Hn consists of the eigenvalues of a symmetric tridiagonal matrix of order 2n + 1 and a diagonal matrix of order 2n + 1. Based on the properties of these matrices, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index and the number of spanning trees of Hn are derived. Finally, we show that the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index of Hn is approximately one quarter of its Wiener (resp. Gutman) index. Based on the decomposition theorem of the Laplacian (resp. normalized Laplacian) polynomial, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index, and the number of spanning trees are derived. In addition, the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index is found to be approximately one quarter of its Wiener (resp. Gutman) index.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.25787</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chains ; Chemistry ; Eigenvalues ; Graph theory ; Gutman index ; Kirchhoff index ; Mathematical analysis ; Matrix methods ; multiplicative degree‐Kirchhoff index ; Physical chemistry ; Quantum physics ; spanning tree ; Wiener index</subject><ispartof>International journal of quantum chemistry, 2018-12, Vol.118 (24), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-c75ef270253b82b48f29312b3b1687991a35a5a8b406548ca0883b4cd02c25be3</citedby><cites>FETCH-LOGICAL-c3327-c75ef270253b82b48f29312b3b1687991a35a5a8b406548ca0883b4cd02c25be3</cites><orcidid>0000-0001-7569-6223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.25787$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.25787$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Pan, Yingui</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><title>Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains</title><title>International journal of quantum chemistry</title><description>Let Hn be a linear crossed hexagonal chain with n crossed hexagonals. In this article, we find that the Laplacian (resp. normalized Laplacian) spectrum of Hn consists of the eigenvalues of a symmetric tridiagonal matrix of order 2n + 1 and a diagonal matrix of order 2n + 1. Based on the properties of these matrices, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index and the number of spanning trees of Hn are derived. Finally, we show that the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index of Hn is approximately one quarter of its Wiener (resp. Gutman) index. Based on the decomposition theorem of the Laplacian (resp. normalized Laplacian) polynomial, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index, and the number of spanning trees are derived. In addition, the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index is found to be approximately one quarter of its Wiener (resp. Gutman) index.</description><subject>Chains</subject><subject>Chemistry</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Gutman index</subject><subject>Kirchhoff index</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>multiplicative degree‐Kirchhoff index</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>spanning tree</subject><subject>Wiener index</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10N1KwzAUB_AgCs7phW8Q8EqwWz7aJL0c4hcORHDgXUjTdM3o0i5pdbvzEXxGn8S6eiV4dS7O7xz-_AE4x2iCESLTTacmJOGCH4ARRimPYoZfD8Go36GIMySOwUkIK4QQo4yPgH-0XpdlXRTQutxsr-C6q1rbVFar1r4ZmJulN-br4_MPhMrlMDTKOeuWsO1NgHUB29LAyjqjPNS-DsHksDRbtaydqqAulXXhFBwVqgrm7HeOweL25uX6Ppo_3T1cz-aRppTwSPPEFIQjktBMkCwWBUkpJhnNMBM8TbGiiUqUyGLEklhohYSgWaxzRDRJMkPH4GL42_h605nQylXd-T5HkARTnMaMsLRXl4Pax_WmkI23a-V3EiP5U6nsK5X7Sns7Hey7rczufyifF7Ph4huSL3ni</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Pan, Yingui</creator><creator>Li, Jianping</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7569-6223</orcidid></search><sort><creationdate>20181215</creationdate><title>Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains</title><author>Pan, Yingui ; Li, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-c75ef270253b82b48f29312b3b1687991a35a5a8b406548ca0883b4cd02c25be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chains</topic><topic>Chemistry</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Gutman index</topic><topic>Kirchhoff index</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>multiplicative degree‐Kirchhoff index</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>spanning tree</topic><topic>Wiener index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yingui</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yingui</au><au>Li, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2018-12-15</date><risdate>2018</risdate><volume>118</volume><issue>24</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Let Hn be a linear crossed hexagonal chain with n crossed hexagonals. In this article, we find that the Laplacian (resp. normalized Laplacian) spectrum of Hn consists of the eigenvalues of a symmetric tridiagonal matrix of order 2n + 1 and a diagonal matrix of order 2n + 1. Based on the properties of these matrices, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index and the number of spanning trees of Hn are derived. Finally, we show that the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index of Hn is approximately one quarter of its Wiener (resp. Gutman) index. Based on the decomposition theorem of the Laplacian (resp. normalized Laplacian) polynomial, significant closed formulas for the Kirchhoff index, multiplicative degree‐Kirchhoff index, and the number of spanning trees are derived. In addition, the Kirchhoff (resp. multiplicative degree‐Kirchhoff) index is found to be approximately one quarter of its Wiener (resp. Gutman) index.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.25787</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7569-6223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2018-12, Vol.118 (24), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2131946269
source Wiley Online Library All Journals
subjects Chains
Chemistry
Eigenvalues
Graph theory
Gutman index
Kirchhoff index
Mathematical analysis
Matrix methods
multiplicative degree‐Kirchhoff index
Physical chemistry
Quantum physics
spanning tree
Wiener index
title Kirchhoff index, multiplicative degree‐Kirchhoff index and spanning trees of the linear crossed hexagonal chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirchhoff%20index,%20multiplicative%20degree%E2%80%90Kirchhoff%20index%20and%20spanning%20trees%20of%20the%20linear%20crossed%20hexagonal%20chains&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Pan,%20Yingui&rft.date=2018-12-15&rft.volume=118&rft.issue=24&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.25787&rft_dat=%3Cproquest_cross%3E2131946269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131946269&rft_id=info:pmid/&rfr_iscdi=true