Conductive CaSi^sub 2^ transparent in the near infra-red range

The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14–40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[1ī0] epitaxial relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-01, Vol.770, p.710
Hauptverfasser: Galkin, Nikolay G, Dotsenko, Sergey A, Galkin, Konstantin N, Maslov, Andrey M, Migas, Dmitrii B, Bogorodz, Vlodislav O, Filonov, Andrey B, Borisenko, Victor E, Cora, Ildiko, Pécz, Bela, Goroshko, Dmitrii L, Tupkalo, Andrei V, Chusovitin, Evgenii A, Subbotin, Evgenii Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 710
container_title Journal of alloys and compounds
container_volume 770
creator Galkin, Nikolay G
Dotsenko, Sergey A
Galkin, Konstantin N
Maslov, Andrey M
Migas, Dmitrii B
Bogorodz, Vlodislav O
Filonov, Andrey B
Borisenko, Victor E
Cora, Ildiko
Pécz, Bela
Goroshko, Dmitrii L
Tupkalo, Andrei V
Chusovitin, Evgenii A
Subbotin, Evgenii Y
description The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14–40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[1ī0] epitaxial relationship has been conserved for the embedded CaSi2 layer regardless of its thickness and the Si overgrowth mode (molecular beam epitaxy or solid phase epitaxy). The embedded CaSi2 layers are characterized by the lattice parameter distortion of about ±4% due to the difference in the thermal expansion coefficients of the silicide and silicon. Two types of Si overgrowth atop CaSi2(001) planes have been observed: (i) {111}-twinned Si crystals were found onto the CaSi2(001) surface in the DHS with CaSi2 thickness of 32–40 nm, which have preserved the {111} planes parallel to the Si(111) ones of the substrate; (ii) a polycrystalline twinned Si capping layer with a variable thickness has been formed in the samples with the smallest CaSi2 thickness (14–16 nm). Experimentally determined optical functions for the CaSi2 layer embedded in the silicon matrix have shown the presence of degenerate semiconducting properties with strong absorbance at the photon energies higher than 2.3 eV and small contribution from the free carrier absorption at 0.4–1.2 eV. Ab initio calculations within the generalized gradient approximation and screened hybrid functional of the hR-6 CaSi2 bulk with and without lattice distortion (by ±3%) have demonstrated the metal or gapless semiconductor energy band structure, because the Fermi level crosses several bands also assuming a huge free carrier concentration. The low-temperature Hall measurements and magnetoresistance measurements have proved that CaSi2 films on silicon are a gapless semiconductor with two types of carrier “pockets” (holes and electrons) that determine the resulting conductivity, concentration and mobility as a function of the Fermi level shift with the temperature increase. Mechanisms of the experimentally observed optical transparency of CaSi2 in the infra-red range are discussed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2131833352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131833352</sourcerecordid><originalsourceid>FETCH-proquest_journals_21318333523</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD93eOA6kOTZmm7cFMW9rltS-6otktZ8PL9deABXMzAzY4nUB-T7LMvnLBG5SrlGrZds5X0vhJA5yoQdi8E28R66D0Fhrl3pYw2qhOCM9aNxZAN0FsKTwJJxk7fOcEcNTMODNmzRmpen7Y9rtjufbsWFj254R_Kh6ofo7JQqJVFqREwV_nd9AW7WOPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131833352</pqid></control><display><type>article</type><title>Conductive CaSi^sub 2^ transparent in the near infra-red range</title><source>Elsevier ScienceDirect Journals</source><creator>Galkin, Nikolay G ; Dotsenko, Sergey A ; Galkin, Konstantin N ; Maslov, Andrey M ; Migas, Dmitrii B ; Bogorodz, Vlodislav O ; Filonov, Andrey B ; Borisenko, Victor E ; Cora, Ildiko ; Pécz, Bela ; Goroshko, Dmitrii L ; Tupkalo, Andrei V ; Chusovitin, Evgenii A ; Subbotin, Evgenii Y</creator><creatorcontrib>Galkin, Nikolay G ; Dotsenko, Sergey A ; Galkin, Konstantin N ; Maslov, Andrey M ; Migas, Dmitrii B ; Bogorodz, Vlodislav O ; Filonov, Andrey B ; Borisenko, Victor E ; Cora, Ildiko ; Pécz, Bela ; Goroshko, Dmitrii L ; Tupkalo, Andrei V ; Chusovitin, Evgenii A ; Subbotin, Evgenii Y</creatorcontrib><description>The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14–40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[1ī0] epitaxial relationship has been conserved for the embedded CaSi2 layer regardless of its thickness and the Si overgrowth mode (molecular beam epitaxy or solid phase epitaxy). The embedded CaSi2 layers are characterized by the lattice parameter distortion of about ±4% due to the difference in the thermal expansion coefficients of the silicide and silicon. Two types of Si overgrowth atop CaSi2(001) planes have been observed: (i) {111}-twinned Si crystals were found onto the CaSi2(001) surface in the DHS with CaSi2 thickness of 32–40 nm, which have preserved the {111} planes parallel to the Si(111) ones of the substrate; (ii) a polycrystalline twinned Si capping layer with a variable thickness has been formed in the samples with the smallest CaSi2 thickness (14–16 nm). Experimentally determined optical functions for the CaSi2 layer embedded in the silicon matrix have shown the presence of degenerate semiconducting properties with strong absorbance at the photon energies higher than 2.3 eV and small contribution from the free carrier absorption at 0.4–1.2 eV. Ab initio calculations within the generalized gradient approximation and screened hybrid functional of the hR-6 CaSi2 bulk with and without lattice distortion (by ±3%) have demonstrated the metal or gapless semiconductor energy band structure, because the Fermi level crosses several bands also assuming a huge free carrier concentration. The low-temperature Hall measurements and magnetoresistance measurements have proved that CaSi2 films on silicon are a gapless semiconductor with two types of carrier “pockets” (holes and electrons) that determine the resulting conductivity, concentration and mobility as a function of the Fermi level shift with the temperature increase. Mechanisms of the experimentally observed optical transparency of CaSi2 in the infra-red range are discussed.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Band structure ; Banded structure ; Carrier density ; Distortion ; Fermi level ; Heterostructures ; Intermetallic compounds ; Magnetoresistance ; Magnetoresistivity ; Mathematical analysis ; Matrix ; Molecular beam epitaxy ; Planes ; Semiconductors ; Silicides ; Silicon ; Silicon substrates ; Solid phases ; Thermal expansion ; Thin films ; Variable thickness</subject><ispartof>Journal of alloys and compounds, 2019-01, Vol.770, p.710</ispartof><rights>Copyright Elsevier BV Jan 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Galkin, Nikolay G</creatorcontrib><creatorcontrib>Dotsenko, Sergey A</creatorcontrib><creatorcontrib>Galkin, Konstantin N</creatorcontrib><creatorcontrib>Maslov, Andrey M</creatorcontrib><creatorcontrib>Migas, Dmitrii B</creatorcontrib><creatorcontrib>Bogorodz, Vlodislav O</creatorcontrib><creatorcontrib>Filonov, Andrey B</creatorcontrib><creatorcontrib>Borisenko, Victor E</creatorcontrib><creatorcontrib>Cora, Ildiko</creatorcontrib><creatorcontrib>Pécz, Bela</creatorcontrib><creatorcontrib>Goroshko, Dmitrii L</creatorcontrib><creatorcontrib>Tupkalo, Andrei V</creatorcontrib><creatorcontrib>Chusovitin, Evgenii A</creatorcontrib><creatorcontrib>Subbotin, Evgenii Y</creatorcontrib><title>Conductive CaSi^sub 2^ transparent in the near infra-red range</title><title>Journal of alloys and compounds</title><description>The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14–40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[1ī0] epitaxial relationship has been conserved for the embedded CaSi2 layer regardless of its thickness and the Si overgrowth mode (molecular beam epitaxy or solid phase epitaxy). The embedded CaSi2 layers are characterized by the lattice parameter distortion of about ±4% due to the difference in the thermal expansion coefficients of the silicide and silicon. Two types of Si overgrowth atop CaSi2(001) planes have been observed: (i) {111}-twinned Si crystals were found onto the CaSi2(001) surface in the DHS with CaSi2 thickness of 32–40 nm, which have preserved the {111} planes parallel to the Si(111) ones of the substrate; (ii) a polycrystalline twinned Si capping layer with a variable thickness has been formed in the samples with the smallest CaSi2 thickness (14–16 nm). Experimentally determined optical functions for the CaSi2 layer embedded in the silicon matrix have shown the presence of degenerate semiconducting properties with strong absorbance at the photon energies higher than 2.3 eV and small contribution from the free carrier absorption at 0.4–1.2 eV. Ab initio calculations within the generalized gradient approximation and screened hybrid functional of the hR-6 CaSi2 bulk with and without lattice distortion (by ±3%) have demonstrated the metal or gapless semiconductor energy band structure, because the Fermi level crosses several bands also assuming a huge free carrier concentration. The low-temperature Hall measurements and magnetoresistance measurements have proved that CaSi2 films on silicon are a gapless semiconductor with two types of carrier “pockets” (holes and electrons) that determine the resulting conductivity, concentration and mobility as a function of the Fermi level shift with the temperature increase. Mechanisms of the experimentally observed optical transparency of CaSi2 in the infra-red range are discussed.</description><subject>Band structure</subject><subject>Banded structure</subject><subject>Carrier density</subject><subject>Distortion</subject><subject>Fermi level</subject><subject>Heterostructures</subject><subject>Intermetallic compounds</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Molecular beam epitaxy</subject><subject>Planes</subject><subject>Semiconductors</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Solid phases</subject><subject>Thermal expansion</subject><subject>Thin films</subject><subject>Variable thickness</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD93eOA6kOTZmm7cFMW9rltS-6otktZ8PL9deABXMzAzY4nUB-T7LMvnLBG5SrlGrZds5X0vhJA5yoQdi8E28R66D0Fhrl3pYw2qhOCM9aNxZAN0FsKTwJJxk7fOcEcNTMODNmzRmpen7Y9rtjufbsWFj254R_Kh6ofo7JQqJVFqREwV_nd9AW7WOPc</recordid><startdate>20190105</startdate><enddate>20190105</enddate><creator>Galkin, Nikolay G</creator><creator>Dotsenko, Sergey A</creator><creator>Galkin, Konstantin N</creator><creator>Maslov, Andrey M</creator><creator>Migas, Dmitrii B</creator><creator>Bogorodz, Vlodislav O</creator><creator>Filonov, Andrey B</creator><creator>Borisenko, Victor E</creator><creator>Cora, Ildiko</creator><creator>Pécz, Bela</creator><creator>Goroshko, Dmitrii L</creator><creator>Tupkalo, Andrei V</creator><creator>Chusovitin, Evgenii A</creator><creator>Subbotin, Evgenii Y</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190105</creationdate><title>Conductive CaSi^sub 2^ transparent in the near infra-red range</title><author>Galkin, Nikolay G ; Dotsenko, Sergey A ; Galkin, Konstantin N ; Maslov, Andrey M ; Migas, Dmitrii B ; Bogorodz, Vlodislav O ; Filonov, Andrey B ; Borisenko, Victor E ; Cora, Ildiko ; Pécz, Bela ; Goroshko, Dmitrii L ; Tupkalo, Andrei V ; Chusovitin, Evgenii A ; Subbotin, Evgenii Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21318333523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Band structure</topic><topic>Banded structure</topic><topic>Carrier density</topic><topic>Distortion</topic><topic>Fermi level</topic><topic>Heterostructures</topic><topic>Intermetallic compounds</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Molecular beam epitaxy</topic><topic>Planes</topic><topic>Semiconductors</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Solid phases</topic><topic>Thermal expansion</topic><topic>Thin films</topic><topic>Variable thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galkin, Nikolay G</creatorcontrib><creatorcontrib>Dotsenko, Sergey A</creatorcontrib><creatorcontrib>Galkin, Konstantin N</creatorcontrib><creatorcontrib>Maslov, Andrey M</creatorcontrib><creatorcontrib>Migas, Dmitrii B</creatorcontrib><creatorcontrib>Bogorodz, Vlodislav O</creatorcontrib><creatorcontrib>Filonov, Andrey B</creatorcontrib><creatorcontrib>Borisenko, Victor E</creatorcontrib><creatorcontrib>Cora, Ildiko</creatorcontrib><creatorcontrib>Pécz, Bela</creatorcontrib><creatorcontrib>Goroshko, Dmitrii L</creatorcontrib><creatorcontrib>Tupkalo, Andrei V</creatorcontrib><creatorcontrib>Chusovitin, Evgenii A</creatorcontrib><creatorcontrib>Subbotin, Evgenii Y</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galkin, Nikolay G</au><au>Dotsenko, Sergey A</au><au>Galkin, Konstantin N</au><au>Maslov, Andrey M</au><au>Migas, Dmitrii B</au><au>Bogorodz, Vlodislav O</au><au>Filonov, Andrey B</au><au>Borisenko, Victor E</au><au>Cora, Ildiko</au><au>Pécz, Bela</au><au>Goroshko, Dmitrii L</au><au>Tupkalo, Andrei V</au><au>Chusovitin, Evgenii A</au><au>Subbotin, Evgenii Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive CaSi^sub 2^ transparent in the near infra-red range</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-01-05</date><risdate>2019</risdate><volume>770</volume><spage>710</spage><pages>710-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The methods of heteroepitaxial growth of Si/CaSi2/Si(111) double heterostructures (DHS) at 500 °C have been developed. Thin CaSi2 layers with the thicknesses of 14–40 nm have been successfully embedded in the silicon matrix. The hR6-CaSi2(001)||Si(111) with hR6-CaSi2[100]||Si[1ī0] epitaxial relationship has been conserved for the embedded CaSi2 layer regardless of its thickness and the Si overgrowth mode (molecular beam epitaxy or solid phase epitaxy). The embedded CaSi2 layers are characterized by the lattice parameter distortion of about ±4% due to the difference in the thermal expansion coefficients of the silicide and silicon. Two types of Si overgrowth atop CaSi2(001) planes have been observed: (i) {111}-twinned Si crystals were found onto the CaSi2(001) surface in the DHS with CaSi2 thickness of 32–40 nm, which have preserved the {111} planes parallel to the Si(111) ones of the substrate; (ii) a polycrystalline twinned Si capping layer with a variable thickness has been formed in the samples with the smallest CaSi2 thickness (14–16 nm). Experimentally determined optical functions for the CaSi2 layer embedded in the silicon matrix have shown the presence of degenerate semiconducting properties with strong absorbance at the photon energies higher than 2.3 eV and small contribution from the free carrier absorption at 0.4–1.2 eV. Ab initio calculations within the generalized gradient approximation and screened hybrid functional of the hR-6 CaSi2 bulk with and without lattice distortion (by ±3%) have demonstrated the metal or gapless semiconductor energy band structure, because the Fermi level crosses several bands also assuming a huge free carrier concentration. The low-temperature Hall measurements and magnetoresistance measurements have proved that CaSi2 films on silicon are a gapless semiconductor with two types of carrier “pockets” (holes and electrons) that determine the resulting conductivity, concentration and mobility as a function of the Fermi level shift with the temperature increase. Mechanisms of the experimentally observed optical transparency of CaSi2 in the infra-red range are discussed.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-01, Vol.770, p.710
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2131833352
source Elsevier ScienceDirect Journals
subjects Band structure
Banded structure
Carrier density
Distortion
Fermi level
Heterostructures
Intermetallic compounds
Magnetoresistance
Magnetoresistivity
Mathematical analysis
Matrix
Molecular beam epitaxy
Planes
Semiconductors
Silicides
Silicon
Silicon substrates
Solid phases
Thermal expansion
Thin films
Variable thickness
title Conductive CaSi^sub 2^ transparent in the near infra-red range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20CaSi%5Esub%202%5E%20transparent%20in%20the%20near%20infra-red%20range&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Galkin,%20Nikolay%20G&rft.date=2019-01-05&rft.volume=770&rft.spage=710&rft.pages=710-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/&rft_dat=%3Cproquest%3E2131833352%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131833352&rft_id=info:pmid/&rfr_iscdi=true