Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets

This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2018-11, Vol.353, p.84-92
Hauptverfasser: Garzón, Carlos M., Recco, Abel A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 84
container_title Surface & coatings technology
container_volume 353
creator Garzón, Carlos M.
Recco, Abel A.C.
description This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis. [Display omitted] •Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.
doi_str_mv 10.1016/j.surfcoat.2018.08.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131591974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218308971</els_id><sourcerecordid>2131591974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</originalsourceid><addsrcrecordid>eNqFkN1KHTEUhUOp0FP1FSTg9RzzN5OZu4pYLRzsTb0OmWSPzWH-zM4o5yV8ZjMc621hwd6Qb61NFiEXnG0549XVfotL7Nxk01YwXm9ZVlV_IRte66aQUumvZMNEqYu60eIb-Y64Z4xx3agNeXtYBojB2Z5iGJbepjCNNGv-axEoJtuGPqQDbSG9AozULphgDAmoHT3tIMZ1D2NGAXrahX5AivOSEsTCwzxhfs9gnIZPb3BrcBh7QPzwJRufIOEZOelsj3D-MU_J48_bPzf3xe733a-b613hpGKpKKuWSe6E0h3rlBei5C3TrZAldNYrL1sHrtVgZeuFsk0NWvOm8pVXmSqdPCWXx9w5Ts8LYDL7aYljPmkEl7xseKNVpqoj5eKEGKEzcwyDjQfDmVm7N3vzr3uzdm9YVlVn44-jEfIfXgJEgy7A6MCHCC4ZP4X_RbwDIaCV8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131591974</pqid></control><display><type>article</type><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><source>Access via ScienceDirect (Elsevier)</source><creator>Garzón, Carlos M. ; Recco, Abel A.C.</creator><creatorcontrib>Garzón, Carlos M. ; Recco, Abel A.C.</creatorcontrib><description>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis. [Display omitted] •Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.08.068</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Austenite ; Austenitic stainless steel ; Austenitic stainless steels ; Austenitic targets ; Body centered cubic lattice ; Chemical composition ; Computer simulation ; Destabilization ; Face centered cubic lattice ; Ferrites ; Magnetron sputtering ; Nickel ; Organic chemistry ; Partitioning ; Phase stability ; Protective coatings ; Stability criteria ; Stainless steel films ; Steel structures ; Structural stability ; Substrates ; Thermodynamics ; Thin film growth ; Thin steel films</subject><ispartof>Surface &amp; coatings technology, 2018-11, Vol.353, p.84-92</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</citedby><cites>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</cites><orcidid>0000-0001-9429-5433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.08.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Garzón, Carlos M.</creatorcontrib><creatorcontrib>Recco, Abel A.C.</creatorcontrib><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><title>Surface &amp; coatings technology</title><description>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis. [Display omitted] •Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</description><subject>Alloys</subject><subject>Austenite</subject><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Austenitic targets</subject><subject>Body centered cubic lattice</subject><subject>Chemical composition</subject><subject>Computer simulation</subject><subject>Destabilization</subject><subject>Face centered cubic lattice</subject><subject>Ferrites</subject><subject>Magnetron sputtering</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Partitioning</subject><subject>Phase stability</subject><subject>Protective coatings</subject><subject>Stability criteria</subject><subject>Stainless steel films</subject><subject>Steel structures</subject><subject>Structural stability</subject><subject>Substrates</subject><subject>Thermodynamics</subject><subject>Thin film growth</subject><subject>Thin steel films</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KHTEUhUOp0FP1FSTg9RzzN5OZu4pYLRzsTb0OmWSPzWH-zM4o5yV8ZjMc621hwd6Qb61NFiEXnG0549XVfotL7Nxk01YwXm9ZVlV_IRte66aQUumvZMNEqYu60eIb-Y64Z4xx3agNeXtYBojB2Z5iGJbepjCNNGv-axEoJtuGPqQDbSG9AozULphgDAmoHT3tIMZ1D2NGAXrahX5AivOSEsTCwzxhfs9gnIZPb3BrcBh7QPzwJRufIOEZOelsj3D-MU_J48_bPzf3xe733a-b613hpGKpKKuWSe6E0h3rlBei5C3TrZAldNYrL1sHrtVgZeuFsk0NWvOm8pVXmSqdPCWXx9w5Ts8LYDL7aYljPmkEl7xseKNVpqoj5eKEGKEzcwyDjQfDmVm7N3vzr3uzdm9YVlVn44-jEfIfXgJEgy7A6MCHCC4ZP4X_RbwDIaCV8g</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Garzón, Carlos M.</creator><creator>Recco, Abel A.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9429-5433</orcidid></search><sort><creationdate>20181115</creationdate><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><author>Garzón, Carlos M. ; Recco, Abel A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Austenite</topic><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Austenitic targets</topic><topic>Body centered cubic lattice</topic><topic>Chemical composition</topic><topic>Computer simulation</topic><topic>Destabilization</topic><topic>Face centered cubic lattice</topic><topic>Ferrites</topic><topic>Magnetron sputtering</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Partitioning</topic><topic>Phase stability</topic><topic>Protective coatings</topic><topic>Stability criteria</topic><topic>Stainless steel films</topic><topic>Steel structures</topic><topic>Structural stability</topic><topic>Substrates</topic><topic>Thermodynamics</topic><topic>Thin film growth</topic><topic>Thin steel films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garzón, Carlos M.</creatorcontrib><creatorcontrib>Recco, Abel A.C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garzón, Carlos M.</au><au>Recco, Abel A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>353</volume><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis. [Display omitted] •Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.08.068</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9429-5433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2018-11, Vol.353, p.84-92
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2131591974
source Access via ScienceDirect (Elsevier)
subjects Alloys
Austenite
Austenitic stainless steel
Austenitic stainless steels
Austenitic targets
Body centered cubic lattice
Chemical composition
Computer simulation
Destabilization
Face centered cubic lattice
Ferrites
Magnetron sputtering
Nickel
Organic chemistry
Partitioning
Phase stability
Protective coatings
Stability criteria
Stainless steel films
Steel structures
Structural stability
Substrates
Thermodynamics
Thin film growth
Thin steel films
title Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20on%20phase%20stability%20between%20austenite%20and%20ferrite%20in%20steel%20films%20sputter-deposited%20from%20austenitic%20stainless%20steel%20targets&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Garz%C3%B3n,%20Carlos%20M.&rft.date=2018-11-15&rft.volume=353&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.08.068&rft_dat=%3Cproquest_cross%3E2131591974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131591974&rft_id=info:pmid/&rft_els_id=S0257897218308971&rfr_iscdi=true