Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets
This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. D...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2018-11, Vol.353, p.84-92 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | Surface & coatings technology |
container_volume | 353 |
creator | Garzón, Carlos M. Recco, Abel A.C. |
description | This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis.
[Display omitted]
•Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data. |
doi_str_mv | 10.1016/j.surfcoat.2018.08.068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131591974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218308971</els_id><sourcerecordid>2131591974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</originalsourceid><addsrcrecordid>eNqFkN1KHTEUhUOp0FP1FSTg9RzzN5OZu4pYLRzsTb0OmWSPzWH-zM4o5yV8ZjMc621hwd6Qb61NFiEXnG0549XVfotL7Nxk01YwXm9ZVlV_IRte66aQUumvZMNEqYu60eIb-Y64Z4xx3agNeXtYBojB2Z5iGJbepjCNNGv-axEoJtuGPqQDbSG9AozULphgDAmoHT3tIMZ1D2NGAXrahX5AivOSEsTCwzxhfs9gnIZPb3BrcBh7QPzwJRufIOEZOelsj3D-MU_J48_bPzf3xe733a-b613hpGKpKKuWSe6E0h3rlBei5C3TrZAldNYrL1sHrtVgZeuFsk0NWvOm8pVXmSqdPCWXx9w5Ts8LYDL7aYljPmkEl7xseKNVpqoj5eKEGKEzcwyDjQfDmVm7N3vzr3uzdm9YVlVn44-jEfIfXgJEgy7A6MCHCC4ZP4X_RbwDIaCV8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131591974</pqid></control><display><type>article</type><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><source>Access via ScienceDirect (Elsevier)</source><creator>Garzón, Carlos M. ; Recco, Abel A.C.</creator><creatorcontrib>Garzón, Carlos M. ; Recco, Abel A.C.</creatorcontrib><description>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis.
[Display omitted]
•Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.08.068</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Austenite ; Austenitic stainless steel ; Austenitic stainless steels ; Austenitic targets ; Body centered cubic lattice ; Chemical composition ; Computer simulation ; Destabilization ; Face centered cubic lattice ; Ferrites ; Magnetron sputtering ; Nickel ; Organic chemistry ; Partitioning ; Phase stability ; Protective coatings ; Stability criteria ; Stainless steel films ; Steel structures ; Structural stability ; Substrates ; Thermodynamics ; Thin film growth ; Thin steel films</subject><ispartof>Surface & coatings technology, 2018-11, Vol.353, p.84-92</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</citedby><cites>FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</cites><orcidid>0000-0001-9429-5433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.08.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Garzón, Carlos M.</creatorcontrib><creatorcontrib>Recco, Abel A.C.</creatorcontrib><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><title>Surface & coatings technology</title><description>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis.
[Display omitted]
•Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</description><subject>Alloys</subject><subject>Austenite</subject><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Austenitic targets</subject><subject>Body centered cubic lattice</subject><subject>Chemical composition</subject><subject>Computer simulation</subject><subject>Destabilization</subject><subject>Face centered cubic lattice</subject><subject>Ferrites</subject><subject>Magnetron sputtering</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Partitioning</subject><subject>Phase stability</subject><subject>Protective coatings</subject><subject>Stability criteria</subject><subject>Stainless steel films</subject><subject>Steel structures</subject><subject>Structural stability</subject><subject>Substrates</subject><subject>Thermodynamics</subject><subject>Thin film growth</subject><subject>Thin steel films</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KHTEUhUOp0FP1FSTg9RzzN5OZu4pYLRzsTb0OmWSPzWH-zM4o5yV8ZjMc621hwd6Qb61NFiEXnG0549XVfotL7Nxk01YwXm9ZVlV_IRte66aQUumvZMNEqYu60eIb-Y64Z4xx3agNeXtYBojB2Z5iGJbepjCNNGv-axEoJtuGPqQDbSG9AozULphgDAmoHT3tIMZ1D2NGAXrahX5AivOSEsTCwzxhfs9gnIZPb3BrcBh7QPzwJRufIOEZOelsj3D-MU_J48_bPzf3xe733a-b613hpGKpKKuWSe6E0h3rlBei5C3TrZAldNYrL1sHrtVgZeuFsk0NWvOm8pVXmSqdPCWXx9w5Ts8LYDL7aYljPmkEl7xseKNVpqoj5eKEGKEzcwyDjQfDmVm7N3vzr3uzdm9YVlVn44-jEfIfXgJEgy7A6MCHCC4ZP4X_RbwDIaCV8g</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Garzón, Carlos M.</creator><creator>Recco, Abel A.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9429-5433</orcidid></search><sort><creationdate>20181115</creationdate><title>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</title><author>Garzón, Carlos M. ; Recco, Abel A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-56b031c247f0f4d2251b07b235efad4d3bcecb7ea3bd24a98e77196d6d47b25c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Austenite</topic><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Austenitic targets</topic><topic>Body centered cubic lattice</topic><topic>Chemical composition</topic><topic>Computer simulation</topic><topic>Destabilization</topic><topic>Face centered cubic lattice</topic><topic>Ferrites</topic><topic>Magnetron sputtering</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Partitioning</topic><topic>Phase stability</topic><topic>Protective coatings</topic><topic>Stability criteria</topic><topic>Stainless steel films</topic><topic>Steel structures</topic><topic>Structural stability</topic><topic>Substrates</topic><topic>Thermodynamics</topic><topic>Thin film growth</topic><topic>Thin steel films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garzón, Carlos M.</creatorcontrib><creatorcontrib>Recco, Abel A.C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garzón, Carlos M.</au><au>Recco, Abel A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets</atitle><jtitle>Surface & coatings technology</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>353</volume><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>This contribution presents a theoretical discussion on phase hierarchy stability between face-centered cubic (FCC), austenite, and body-centered cubic (BCC), ferrite, lattice structures of stainless steel (SS) films that are sputter-deposited from austenitic targets under non-reactive atmospheres. Data published in literature on both phase characterization and chemical composition of diverse SS films are interpreted anew in this contribution in the light of lattice stability thermodynamic simulations. For films obtained from 304 and 316 steel targets, thermodynamic simulations predict that the ferrite phase is more stable than the austenite phase at low thermal energies. In contrast, simulations forecast thermodynamic stability at low thermal energies of the austenite phase in films that are sputtered from 330 steel targets. The criterion of lattice stability reveals that structures observed in the experiments cannot be described comprehensively by thermodynamic states where either full atomic partitioning among phases is established or zero atomic partitioning takes place. Thereby, a description of an equilibrium with incomplete atomic partitioning is proposed here, with the aim of depicting the structures reported in the literature. Such an equilibrium with incomplete atomic partitioning adequately describes the gradual destabilization of ferrite and the increased fraction of austenite (up to fully austenitic structures), when either the substrate heating is intensified, or the Ni content of the alloy is increased, with an 73Fe18Cr9Ni, wt%, initial alloy as a basis.
[Display omitted]
•Phase hierarchy stability between FCC and BCC lattice structures is discussed.•Equilibrium with full atomic partitioning does not account for structures observed.•Equilibrium with incomplete atomic partitioning of metallic atoms is defined.•Incomplete atomic partitioning adequately depicts selected experimental data.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.08.068</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9429-5433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2018-11, Vol.353, p.84-92 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2131591974 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloys Austenite Austenitic stainless steel Austenitic stainless steels Austenitic targets Body centered cubic lattice Chemical composition Computer simulation Destabilization Face centered cubic lattice Ferrites Magnetron sputtering Nickel Organic chemistry Partitioning Phase stability Protective coatings Stability criteria Stainless steel films Steel structures Structural stability Substrates Thermodynamics Thin film growth Thin steel films |
title | Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20on%20phase%20stability%20between%20austenite%20and%20ferrite%20in%20steel%20films%20sputter-deposited%20from%20austenitic%20stainless%20steel%20targets&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Garz%C3%B3n,%20Carlos%20M.&rft.date=2018-11-15&rft.volume=353&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.08.068&rft_dat=%3Cproquest_cross%3E2131591974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131591974&rft_id=info:pmid/&rft_els_id=S0257897218308971&rfr_iscdi=true |