Models for supercritical motion in a superfluid Fermi liquid

We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-10, Vol.98 (14), p.144512, Article 144512
Hauptverfasser: Kuorelahti, J. A., Laine, S. M., Thuneberg, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 144512
container_title Physical review. B
container_volume 98
creator Kuorelahti, J. A.
Laine, S. M.
Thuneberg, E. V.
description We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid He3. We introduce the basis for the calculation of the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving objects of different sizes. For an object that is small compared to the coherence length, we find a drag force that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs of instability at a velocity below vL.
doi_str_mv 10.1103/PhysRevB.98.144512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131590498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131590498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-4049a4e5689386aba37f3355581f87930231ac3b0c28775613a5b1fd830cfca43</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOb-gE8Bn1uT3KRNwBcdToWJIvocsizBjLbZklbYv7dS9encwzncAx9Cl5SUlBK4fv085jf3dVcqWVLOBWUnaMZ4pQqlKnX6fwtyjhY57wghtCKqJmqGbp7j1jUZ-5hwHvYu2RT6YE2D29iH2OHQYTMlvhnCFq9cagNuwmE0F-jMmya7xa_O0cfq_n35WKxfHp6Wt-vCslr0BSdcGe5EJRXIymwM1B5ACCGpl7UCwoAaCxtimaxrUVEwYkP9VgKx3hoOc3Q1_d2neBhc7vUuDqkbJzWjQIUaB-TYYlPLpphzcl7vU2hNOmpK9A8o_QdKK6knUPANMr5b1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131590498</pqid></control><display><type>article</type><title>Models for supercritical motion in a superfluid Fermi liquid</title><source>American Physical Society Journals</source><creator>Kuorelahti, J. A. ; Laine, S. M. ; Thuneberg, E. V.</creator><creatorcontrib>Kuorelahti, J. A. ; Laine, S. M. ; Thuneberg, E. V.</creatorcontrib><description>We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid He3. We introduce the basis for the calculation of the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving objects of different sizes. For an object that is small compared to the coherence length, we find a drag force that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs of instability at a velocity below vL.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.144512</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Boundary conditions ; Coherence length ; Critical velocity ; Cylinders ; Drag ; Fermi liquids ; Flow stability ; Flow velocity ; Fluids ; Reflection ; Superfluidity</subject><ispartof>Physical review. B, 2018-10, Vol.98 (14), p.144512, Article 144512</ispartof><rights>Copyright American Physical Society Oct 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-4049a4e5689386aba37f3355581f87930231ac3b0c28775613a5b1fd830cfca43</citedby><cites>FETCH-LOGICAL-c275t-4049a4e5689386aba37f3355581f87930231ac3b0c28775613a5b1fd830cfca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Kuorelahti, J. A.</creatorcontrib><creatorcontrib>Laine, S. M.</creatorcontrib><creatorcontrib>Thuneberg, E. V.</creatorcontrib><title>Models for supercritical motion in a superfluid Fermi liquid</title><title>Physical review. B</title><description>We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid He3. We introduce the basis for the calculation of the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving objects of different sizes. For an object that is small compared to the coherence length, we find a drag force that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs of instability at a velocity below vL.</description><subject>Boundary conditions</subject><subject>Coherence length</subject><subject>Critical velocity</subject><subject>Cylinders</subject><subject>Drag</subject><subject>Fermi liquids</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fluids</subject><subject>Reflection</subject><subject>Superfluidity</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOb-gE8Bn1uT3KRNwBcdToWJIvocsizBjLbZklbYv7dS9encwzncAx9Cl5SUlBK4fv085jf3dVcqWVLOBWUnaMZ4pQqlKnX6fwtyjhY57wghtCKqJmqGbp7j1jUZ-5hwHvYu2RT6YE2D29iH2OHQYTMlvhnCFq9cagNuwmE0F-jMmya7xa_O0cfq_n35WKxfHp6Wt-vCslr0BSdcGe5EJRXIymwM1B5ACCGpl7UCwoAaCxtimaxrUVEwYkP9VgKx3hoOc3Q1_d2neBhc7vUuDqkbJzWjQIUaB-TYYlPLpphzcl7vU2hNOmpK9A8o_QdKK6knUPANMr5b1g</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Kuorelahti, J. A.</creator><creator>Laine, S. M.</creator><creator>Thuneberg, E. V.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181016</creationdate><title>Models for supercritical motion in a superfluid Fermi liquid</title><author>Kuorelahti, J. A. ; Laine, S. M. ; Thuneberg, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-4049a4e5689386aba37f3355581f87930231ac3b0c28775613a5b1fd830cfca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Coherence length</topic><topic>Critical velocity</topic><topic>Cylinders</topic><topic>Drag</topic><topic>Fermi liquids</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fluids</topic><topic>Reflection</topic><topic>Superfluidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuorelahti, J. A.</creatorcontrib><creatorcontrib>Laine, S. M.</creatorcontrib><creatorcontrib>Thuneberg, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuorelahti, J. A.</au><au>Laine, S. M.</au><au>Thuneberg, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models for supercritical motion in a superfluid Fermi liquid</atitle><jtitle>Physical review. B</jtitle><date>2018-10-16</date><risdate>2018</risdate><volume>98</volume><issue>14</issue><spage>144512</spage><pages>144512-</pages><artnum>144512</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid He3. We introduce the basis for the calculation of the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving objects of different sizes. For an object that is small compared to the coherence length, we find a drag force that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs of instability at a velocity below vL.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.144512</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-10, Vol.98 (14), p.144512, Article 144512
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2131590498
source American Physical Society Journals
subjects Boundary conditions
Coherence length
Critical velocity
Cylinders
Drag
Fermi liquids
Flow stability
Flow velocity
Fluids
Reflection
Superfluidity
title Models for supercritical motion in a superfluid Fermi liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20for%20supercritical%20motion%20in%20a%20superfluid%20Fermi%20liquid&rft.jtitle=Physical%20review.%20B&rft.au=Kuorelahti,%20J.%20A.&rft.date=2018-10-16&rft.volume=98&rft.issue=14&rft.spage=144512&rft.pages=144512-&rft.artnum=144512&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.144512&rft_dat=%3Cproquest_cross%3E2131590498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131590498&rft_id=info:pmid/&rfr_iscdi=true