Fault Diagnosis Method of Exhaust System of Port Vehicle
For the problem that the current fault diagnosis efficiency of vehicle exhaust system based on cold test is low, this paper proposes a fault diagnosis method of port vehicle exhaust system using principal component analysis method. This method used the historical data aggregating normal working cond...
Gespeichert in:
Veröffentlicht in: | Journal of coastal research 2019-05, Vol.83 (sp1), p.469-473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | sp1 |
container_start_page | 469 |
container_title | Journal of coastal research |
container_volume | 83 |
creator | Ji, Wujun Li, Bing |
description | For the problem that the current fault diagnosis efficiency of vehicle exhaust system based on cold test is low, this paper proposes a fault diagnosis method of port vehicle exhaust system using principal component analysis method. This method used the historical data aggregating normal working conditions of exhaust system, and found the principal component model of causality among variables in the process of expressing the normal working condition according to the statistical mode. If the real-time monitoring data did not correspond with the principal component model, we could determine the existence of fault in the exhaust system, then used change of each variable of measured data to analyze the variance contribution rate of principal component model, realizing fault diagnosis. Experimental result shows that the fault diagnosis noise of the proposed method is about 50dB lower than that of other methods, and the diagnostic stability and diagnosis rate are improved. Ji, W. and Li, B., 2018. Fault diagnosis method of exhaust system of port vehicle. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 469–473. Coconut Creek (Florida), ISSN 0749-0208. |
doi_str_mv | 10.2112/SI83-078.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2131586870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26543002</jstor_id><sourcerecordid>26543002</sourcerecordid><originalsourceid>FETCH-LOGICAL-b314t-d1c2a8b4b180b09670492695591401652c48481008f559f5990bb0c36baea88d3</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKcX70LBiwid35cmaXqUuelgojD1GpIudR3bMpMU3H9vS8Wjpw_e-_HexyPkEmFEEendYiazFHI5wiMyQM4x5ZCJYzKAnBUpUJCn5CyENQAKyfIBkVPdbGLyUOvPnQt1SJ5tXLll4qpk8r3STYjJ4hCi3XbKq_Mx-bCrutzYc3JS6U2wF793SN6nk7fxUzp_eZyN7-epyZDFdIkl1dIwgxIMFCIHVlBRcF4ga3_gtGSSSQSQVatVvCjAGCgzYbTVUi6zIbnuc_fefTU2RLV2jd-1lYpihlwKmUNL3fZU6V0I3lZq7-ut9geFoLplVLeMapdR2MJXPbwO0fk_kgrOMgDa-je9b2rndva_qB8Gs2jU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131586870</pqid></control><display><type>article</type><title>Fault Diagnosis Method of Exhaust System of Port Vehicle</title><source>Jstor Complete Legacy</source><creator>Ji, Wujun ; Li, Bing</creator><creatorcontrib>Ji, Wujun ; Li, Bing</creatorcontrib><description>For the problem that the current fault diagnosis efficiency of vehicle exhaust system based on cold test is low, this paper proposes a fault diagnosis method of port vehicle exhaust system using principal component analysis method. This method used the historical data aggregating normal working conditions of exhaust system, and found the principal component model of causality among variables in the process of expressing the normal working condition according to the statistical mode. If the real-time monitoring data did not correspond with the principal component model, we could determine the existence of fault in the exhaust system, then used change of each variable of measured data to analyze the variance contribution rate of principal component model, realizing fault diagnosis. Experimental result shows that the fault diagnosis noise of the proposed method is about 50dB lower than that of other methods, and the diagnostic stability and diagnosis rate are improved. Ji, W. and Li, B., 2018. Fault diagnosis method of exhaust system of port vehicle. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 469–473. Coconut Creek (Florida), ISSN 0749-0208.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/SI83-078.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Algorithms ; Automation ; Batch processes ; Coasts ; Computer simulation ; Data ; Data processing ; Decomposition ; Diagnosis ; Diagnostic systems ; Electricity distribution ; exhaust system ; Exhaust systems ; Fault diagnosis ; History ; Methods ; Ocean engineering ; PORT ENGINEERING ; Port vehicle ; Ports ; Principal components analysis ; Science ; Signal processing ; Stability ; Variables ; Variance analysis ; Vehicle emissions ; Vehicles ; Working conditions</subject><ispartof>Journal of coastal research, 2019-05, Vol.83 (sp1), p.469-473</ispartof><rights>Coastal Education and Research Foundation, Inc. 2018</rights><rights>Copyright Allen Press Publishing Services 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b314t-d1c2a8b4b180b09670492695591401652c48481008f559f5990bb0c36baea88d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26543002$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26543002$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Ji, Wujun</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><title>Fault Diagnosis Method of Exhaust System of Port Vehicle</title><title>Journal of coastal research</title><description>For the problem that the current fault diagnosis efficiency of vehicle exhaust system based on cold test is low, this paper proposes a fault diagnosis method of port vehicle exhaust system using principal component analysis method. This method used the historical data aggregating normal working conditions of exhaust system, and found the principal component model of causality among variables in the process of expressing the normal working condition according to the statistical mode. If the real-time monitoring data did not correspond with the principal component model, we could determine the existence of fault in the exhaust system, then used change of each variable of measured data to analyze the variance contribution rate of principal component model, realizing fault diagnosis. Experimental result shows that the fault diagnosis noise of the proposed method is about 50dB lower than that of other methods, and the diagnostic stability and diagnosis rate are improved. Ji, W. and Li, B., 2018. Fault diagnosis method of exhaust system of port vehicle. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 469–473. Coconut Creek (Florida), ISSN 0749-0208.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Batch processes</subject><subject>Coasts</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Electricity distribution</subject><subject>exhaust system</subject><subject>Exhaust systems</subject><subject>Fault diagnosis</subject><subject>History</subject><subject>Methods</subject><subject>Ocean engineering</subject><subject>PORT ENGINEERING</subject><subject>Port vehicle</subject><subject>Ports</subject><subject>Principal components analysis</subject><subject>Science</subject><subject>Signal processing</subject><subject>Stability</subject><subject>Variables</subject><subject>Variance analysis</subject><subject>Vehicle emissions</subject><subject>Vehicles</subject><subject>Working conditions</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFLwzAYxYMoOKcX70LBiwid35cmaXqUuelgojD1GpIudR3bMpMU3H9vS8Wjpw_e-_HexyPkEmFEEendYiazFHI5wiMyQM4x5ZCJYzKAnBUpUJCn5CyENQAKyfIBkVPdbGLyUOvPnQt1SJ5tXLll4qpk8r3STYjJ4hCi3XbKq_Mx-bCrutzYc3JS6U2wF793SN6nk7fxUzp_eZyN7-epyZDFdIkl1dIwgxIMFCIHVlBRcF4ga3_gtGSSSQSQVatVvCjAGCgzYbTVUi6zIbnuc_fefTU2RLV2jd-1lYpihlwKmUNL3fZU6V0I3lZq7-ut9geFoLplVLeMapdR2MJXPbwO0fk_kgrOMgDa-je9b2rndva_qB8Gs2jU</recordid><startdate>20190504</startdate><enddate>20190504</enddate><creator>Ji, Wujun</creator><creator>Li, Bing</creator><general>Coastal Education and Research Foundation</general><general>COASTAL EDUCATION & RESEARCH FOUNDATION, INC. [CERF]</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190504</creationdate><title>Fault Diagnosis Method of Exhaust System of Port Vehicle</title><author>Ji, Wujun ; Li, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b314t-d1c2a8b4b180b09670492695591401652c48481008f559f5990bb0c36baea88d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Batch processes</topic><topic>Coasts</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Electricity distribution</topic><topic>exhaust system</topic><topic>Exhaust systems</topic><topic>Fault diagnosis</topic><topic>History</topic><topic>Methods</topic><topic>Ocean engineering</topic><topic>PORT ENGINEERING</topic><topic>Port vehicle</topic><topic>Ports</topic><topic>Principal components analysis</topic><topic>Science</topic><topic>Signal processing</topic><topic>Stability</topic><topic>Variables</topic><topic>Variance analysis</topic><topic>Vehicle emissions</topic><topic>Vehicles</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Wujun</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Wujun</au><au>Li, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis Method of Exhaust System of Port Vehicle</atitle><jtitle>Journal of coastal research</jtitle><date>2019-05-04</date><risdate>2019</risdate><volume>83</volume><issue>sp1</issue><spage>469</spage><epage>473</epage><pages>469-473</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>For the problem that the current fault diagnosis efficiency of vehicle exhaust system based on cold test is low, this paper proposes a fault diagnosis method of port vehicle exhaust system using principal component analysis method. This method used the historical data aggregating normal working conditions of exhaust system, and found the principal component model of causality among variables in the process of expressing the normal working condition according to the statistical mode. If the real-time monitoring data did not correspond with the principal component model, we could determine the existence of fault in the exhaust system, then used change of each variable of measured data to analyze the variance contribution rate of principal component model, realizing fault diagnosis. Experimental result shows that the fault diagnosis noise of the proposed method is about 50dB lower than that of other methods, and the diagnostic stability and diagnosis rate are improved. Ji, W. and Li, B., 2018. Fault diagnosis method of exhaust system of port vehicle. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 469–473. Coconut Creek (Florida), ISSN 0749-0208.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/SI83-078.1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-0208 |
ispartof | Journal of coastal research, 2019-05, Vol.83 (sp1), p.469-473 |
issn | 0749-0208 1551-5036 |
language | eng |
recordid | cdi_proquest_journals_2131586870 |
source | Jstor Complete Legacy |
subjects | Algorithms Automation Batch processes Coasts Computer simulation Data Data processing Decomposition Diagnosis Diagnostic systems Electricity distribution exhaust system Exhaust systems Fault diagnosis History Methods Ocean engineering PORT ENGINEERING Port vehicle Ports Principal components analysis Science Signal processing Stability Variables Variance analysis Vehicle emissions Vehicles Working conditions |
title | Fault Diagnosis Method of Exhaust System of Port Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20Method%20of%20Exhaust%20System%20of%20Port%20Vehicle&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Ji,%20Wujun&rft.date=2019-05-04&rft.volume=83&rft.issue=sp1&rft.spage=469&rft.epage=473&rft.pages=469-473&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/SI83-078.1&rft_dat=%3Cjstor_proqu%3E26543002%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131586870&rft_id=info:pmid/&rft_jstor_id=26543002&rfr_iscdi=true |