Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves

Lu, J. and Zhang, H., 2018. Mechanics analysis of drag reduction in hull motion under wind and waves. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 970–975. Coconut Creek (Florida), ISSN 0749-0208. Taking a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research 2019-05, Vol.83 (sp1), p.970-975
Hauptverfasser: Lu, Jing, Zhang, Hejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue sp1
container_start_page 970
container_title Journal of coastal research
container_volume 83
creator Lu, Jing
Zhang, Hejin
description Lu, J. and Zhang, H., 2018. Mechanics analysis of drag reduction in hull motion under wind and waves. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 970–975. Coconut Creek (Florida), ISSN 0749-0208. Taking a large-scale container hull as a numerical simulation object, the computational fluid dynamics (CFD) theory is combined with the super-vacuolar drag reduction technique to reduce the hull boom resistance and total resistance. The hull type line is optimized, the joint drag reduction is carried out to improve the stability of the supercavity, and the SHIPFLOW software is used to simulate the hull resistance. The results show that after the optimization of ship types, because the wave peak change of shipboard is more gentle, viscous resistance is also reduced. Compared with the amplitude of the wave resistance, the change range of the viscous pressure resistance is smaller. The application of supercavitation technology has reduced the resistance of the wave, the reduced wave directly reduces the total resistance and the total resistance performance is improved. It showed that the automatic optimization of the ship's resistance performance has been successful.
doi_str_mv 10.2112/SI83-160.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2131578332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26543084</jstor_id><sourcerecordid>26543084</sourcerecordid><originalsourceid>FETCH-LOGICAL-b273t-462371939de3bb95ad5b942d56bf71795ac686c675c876f9f02f8ba2542f1d1f3</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKcvvgsBX0TozE2ajz6O-bHBhuAHewxpm2hHbWbSCvvv7az46MPlcu_5cTgchM6BTCgAvXleKJaAIBM4QCPgHBJOmDhEIyLTLCGUqGN0EuOGEBAqlSM0X9ni3TRVEfG0MfUuVhF7h2-DecNPtuyKtvINrho87-oar_zP2TWlDXhdNSU2_azNl42n6MiZOtqz3z1Gr_d3L7N5snx8WMymyySnkrVJKiiTkLGstCzPM25KnmcpLbnInQTZPwqhRCEkL5QULnOEOpUbylPqoATHxuhy8N0G_9nZ2OqN70IfPWoKDLhUjNGeuh6oIvgYg3V6G6oPE3YaiN43pfdN6b4pDT18McCb2PrwR1LBU0ZU2utXg55X3jf2P6tvnyBvaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131578332</pqid></control><display><type>article</type><title>Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Lu, Jing ; Zhang, Hejin</creator><creatorcontrib>Lu, Jing ; Zhang, Hejin</creatorcontrib><description>Lu, J. and Zhang, H., 2018. Mechanics analysis of drag reduction in hull motion under wind and waves. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 970–975. Coconut Creek (Florida), ISSN 0749-0208. Taking a large-scale container hull as a numerical simulation object, the computational fluid dynamics (CFD) theory is combined with the super-vacuolar drag reduction technique to reduce the hull boom resistance and total resistance. The hull type line is optimized, the joint drag reduction is carried out to improve the stability of the supercavity, and the SHIPFLOW software is used to simulate the hull resistance. The results show that after the optimization of ship types, because the wave peak change of shipboard is more gentle, viscous resistance is also reduced. Compared with the amplitude of the wave resistance, the change range of the viscous pressure resistance is smaller. The application of supercavitation technology has reduced the resistance of the wave, the reduced wave directly reduces the total resistance and the total resistance performance is improved. It showed that the automatic optimization of the ship's resistance performance has been successful.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/SI83-160.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Automation ; Cavitation ; Coasts ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Design ; Drag ; Drag reduction ; drag reduction mechanics analysis ; Dynamics ; Fluid dynamics ; hull motion ; Hydrodynamics ; Mathematical models ; Mechanics ; Methods ; Ocean engineering ; Optimization ; RENEWABLE ENERGY AND SUSTAINABILITY ; Ship wind and waves ; Ships ; Simulation ; Stability ; Velocity ; Wave resistance</subject><ispartof>Journal of coastal research, 2019-05, Vol.83 (sp1), p.970-975</ispartof><rights>Coastal Education and Research Foundation, Inc. 2018</rights><rights>Copyright Allen Press Publishing Services 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26543084$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26543084$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids></links><search><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Zhang, Hejin</creatorcontrib><title>Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves</title><title>Journal of coastal research</title><description>Lu, J. and Zhang, H., 2018. Mechanics analysis of drag reduction in hull motion under wind and waves. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 970–975. Coconut Creek (Florida), ISSN 0749-0208. Taking a large-scale container hull as a numerical simulation object, the computational fluid dynamics (CFD) theory is combined with the super-vacuolar drag reduction technique to reduce the hull boom resistance and total resistance. The hull type line is optimized, the joint drag reduction is carried out to improve the stability of the supercavity, and the SHIPFLOW software is used to simulate the hull resistance. The results show that after the optimization of ship types, because the wave peak change of shipboard is more gentle, viscous resistance is also reduced. Compared with the amplitude of the wave resistance, the change range of the viscous pressure resistance is smaller. The application of supercavitation technology has reduced the resistance of the wave, the reduced wave directly reduces the total resistance and the total resistance performance is improved. It showed that the automatic optimization of the ship's resistance performance has been successful.</description><subject>Automation</subject><subject>Cavitation</subject><subject>Coasts</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Drag</subject><subject>Drag reduction</subject><subject>drag reduction mechanics analysis</subject><subject>Dynamics</subject><subject>Fluid dynamics</subject><subject>hull motion</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Ocean engineering</subject><subject>Optimization</subject><subject>RENEWABLE ENERGY AND SUSTAINABILITY</subject><subject>Ship wind and waves</subject><subject>Ships</subject><subject>Simulation</subject><subject>Stability</subject><subject>Velocity</subject><subject>Wave resistance</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kN1LwzAUxYMoOKcvvgsBX0TozE2ajz6O-bHBhuAHewxpm2hHbWbSCvvv7az46MPlcu_5cTgchM6BTCgAvXleKJaAIBM4QCPgHBJOmDhEIyLTLCGUqGN0EuOGEBAqlSM0X9ni3TRVEfG0MfUuVhF7h2-DecNPtuyKtvINrho87-oar_zP2TWlDXhdNSU2_azNl42n6MiZOtqz3z1Gr_d3L7N5snx8WMymyySnkrVJKiiTkLGstCzPM25KnmcpLbnInQTZPwqhRCEkL5QULnOEOpUbylPqoATHxuhy8N0G_9nZ2OqN70IfPWoKDLhUjNGeuh6oIvgYg3V6G6oPE3YaiN43pfdN6b4pDT18McCb2PrwR1LBU0ZU2utXg55X3jf2P6tvnyBvaA</recordid><startdate>20190504</startdate><enddate>20190504</enddate><creator>Lu, Jing</creator><creator>Zhang, Hejin</creator><general>Coastal Education and Research Foundation</general><general>COASTAL EDUCATION &amp; RESEARCH FOUNDATION, INC. [CERF]</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190504</creationdate><title>Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves</title><author>Lu, Jing ; Zhang, Hejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b273t-462371939de3bb95ad5b942d56bf71795ac686c675c876f9f02f8ba2542f1d1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Cavitation</topic><topic>Coasts</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Drag</topic><topic>Drag reduction</topic><topic>drag reduction mechanics analysis</topic><topic>Dynamics</topic><topic>Fluid dynamics</topic><topic>hull motion</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Ocean engineering</topic><topic>Optimization</topic><topic>RENEWABLE ENERGY AND SUSTAINABILITY</topic><topic>Ship wind and waves</topic><topic>Ships</topic><topic>Simulation</topic><topic>Stability</topic><topic>Velocity</topic><topic>Wave resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Zhang, Hejin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jing</au><au>Zhang, Hejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves</atitle><jtitle>Journal of coastal research</jtitle><date>2019-05-04</date><risdate>2019</risdate><volume>83</volume><issue>sp1</issue><spage>970</spage><epage>975</epage><pages>970-975</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Lu, J. and Zhang, H., 2018. Mechanics analysis of drag reduction in hull motion under wind and waves. In: Liu, Z.L. and Mi, C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 970–975. Coconut Creek (Florida), ISSN 0749-0208. Taking a large-scale container hull as a numerical simulation object, the computational fluid dynamics (CFD) theory is combined with the super-vacuolar drag reduction technique to reduce the hull boom resistance and total resistance. The hull type line is optimized, the joint drag reduction is carried out to improve the stability of the supercavity, and the SHIPFLOW software is used to simulate the hull resistance. The results show that after the optimization of ship types, because the wave peak change of shipboard is more gentle, viscous resistance is also reduced. Compared with the amplitude of the wave resistance, the change range of the viscous pressure resistance is smaller. The application of supercavitation technology has reduced the resistance of the wave, the reduced wave directly reduces the total resistance and the total resistance performance is improved. It showed that the automatic optimization of the ship's resistance performance has been successful.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/SI83-160.1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-0208
ispartof Journal of coastal research, 2019-05, Vol.83 (sp1), p.970-975
issn 0749-0208
1551-5036
language eng
recordid cdi_proquest_journals_2131578332
source JSTOR Archive Collection A-Z Listing
subjects Automation
Cavitation
Coasts
Computational fluid dynamics
Computer applications
Computer simulation
Design
Drag
Drag reduction
drag reduction mechanics analysis
Dynamics
Fluid dynamics
hull motion
Hydrodynamics
Mathematical models
Mechanics
Methods
Ocean engineering
Optimization
RENEWABLE ENERGY AND SUSTAINABILITY
Ship wind and waves
Ships
Simulation
Stability
Velocity
Wave resistance
title Mechanics Analysis of Drag Reduction in Hull Motion under Wind and Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20Analysis%20of%20Drag%20Reduction%20in%20Hull%20Motion%20under%20Wind%20and%20Waves&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Lu,%20Jing&rft.date=2019-05-04&rft.volume=83&rft.issue=sp1&rft.spage=970&rft.epage=975&rft.pages=970-975&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/SI83-160.1&rft_dat=%3Cjstor_proqu%3E26543084%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131578332&rft_id=info:pmid/&rft_jstor_id=26543084&rfr_iscdi=true