Manifold-defect depth-map restoration for very low-cost S3D videos
In this paper, the proposed algorithm provides a fluent and efficient method for repairing very-low quality depth maps of considerable manifold defects for low-cost stereoscopic 3D (S3D) photographing that such a depth map can be easily yielded by 1st-generation Kinect (Kinect-v1). The corresponding...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-04, Vol.79 (13-14), p.8863-8886 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8886 |
---|---|
container_issue | 13-14 |
container_start_page | 8863 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Chan, Din-Yuen Wu, Ji-Rong |
description | In this paper, the proposed algorithm provides a fluent and efficient method for repairing very-low quality depth maps of considerable manifold defects for low-cost stereoscopic 3D (S3D) photographing that such a depth map can be easily yielded by 1st-generation Kinect (Kinect-v1). The corresponding framework cascades two repairing portions named discriminative non-segmentation hole filling and edge rectification-by-deforming. The former can discriminatively fill a variety of depth-invalid holes with no need of practically making attribute-discrimination and target segmentation for depth holes. The main portions of the latter contain edge-shifting-rectification and texture-edge guided dual processing for tailoring possible twisted depth edges. Since the ingredients of proposed algorithm are compactly concatenated according to intimate context, most troublesome defects in Kinect-v1 depths can be tackled. Particularly, the proposed algorithm can obtain the restoring coherency for successive depth maps. A series of experimental results under various photographing scenarios can demonstrate that a single Kinect-v1 device can fast tell on the development of very low-cost S3D imaging tool by the proposed algorithm. |
doi_str_mv | 10.1007/s11042-018-6804-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131543834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131543834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-28e960c90eebb02d4990f8578759bd9e68184f66b49d6fbfd26566fcc63b22c23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisTaMH_FjCeUpFbEA1lbiB6RK42CnRf17UgWJFauZxT13RgehcwKXBEBeZUKAUwxEYaGAY32AZqSUDEtJyeG4MwVYlkCO0UnOKwAiSspn6Oa56poQW4edD94OhfP98InXVV8kn4eYqqGJXRFiKrY-7Yo2fmMb81C8stti2zgf8yk6ClWb_dnvnKP3-7u3xSNevjw8La6X2FKhBkyV1wKsBu_rGqjjWkNQpVSy1LXTXiiieBCi5tqJUAdHRSlEsFawmlJL2RxdTL19il-b8TmzipvUjScNJYyUnCnGxxSZUjbFnJMPpk_Nuko7Q8DsVZlJlRlVmb0qo0eGTkwes92HT3_N_0M_Q1VqsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131543834</pqid></control><display><type>article</type><title>Manifold-defect depth-map restoration for very low-cost S3D videos</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chan, Din-Yuen ; Wu, Ji-Rong</creator><creatorcontrib>Chan, Din-Yuen ; Wu, Ji-Rong</creatorcontrib><description>In this paper, the proposed algorithm provides a fluent and efficient method for repairing very-low quality depth maps of considerable manifold defects for low-cost stereoscopic 3D (S3D) photographing that such a depth map can be easily yielded by 1st-generation Kinect (Kinect-v1). The corresponding framework cascades two repairing portions named discriminative non-segmentation hole filling and edge rectification-by-deforming. The former can discriminatively fill a variety of depth-invalid holes with no need of practically making attribute-discrimination and target segmentation for depth holes. The main portions of the latter contain edge-shifting-rectification and texture-edge guided dual processing for tailoring possible twisted depth edges. Since the ingredients of proposed algorithm are compactly concatenated according to intimate context, most troublesome defects in Kinect-v1 depths can be tackled. Particularly, the proposed algorithm can obtain the restoring coherency for successive depth maps. A series of experimental results under various photographing scenarios can demonstrate that a single Kinect-v1 device can fast tell on the development of very low-cost S3D imaging tool by the proposed algorithm.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6804-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cascades ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Defects ; Deformation ; Image segmentation ; Low cost ; Maintenance ; Manifolds ; Multimedia Information Systems ; Restoration ; Special Purpose and Application-Based Systems ; Stereoscopy ; Target recognition</subject><ispartof>Multimedia tools and applications, 2020-04, Vol.79 (13-14), p.8863-8886</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-28e960c90eebb02d4990f8578759bd9e68184f66b49d6fbfd26566fcc63b22c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-6804-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-6804-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chan, Din-Yuen</creatorcontrib><creatorcontrib>Wu, Ji-Rong</creatorcontrib><title>Manifold-defect depth-map restoration for very low-cost S3D videos</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, the proposed algorithm provides a fluent and efficient method for repairing very-low quality depth maps of considerable manifold defects for low-cost stereoscopic 3D (S3D) photographing that such a depth map can be easily yielded by 1st-generation Kinect (Kinect-v1). The corresponding framework cascades two repairing portions named discriminative non-segmentation hole filling and edge rectification-by-deforming. The former can discriminatively fill a variety of depth-invalid holes with no need of practically making attribute-discrimination and target segmentation for depth holes. The main portions of the latter contain edge-shifting-rectification and texture-edge guided dual processing for tailoring possible twisted depth edges. Since the ingredients of proposed algorithm are compactly concatenated according to intimate context, most troublesome defects in Kinect-v1 depths can be tackled. Particularly, the proposed algorithm can obtain the restoring coherency for successive depth maps. A series of experimental results under various photographing scenarios can demonstrate that a single Kinect-v1 device can fast tell on the development of very low-cost S3D imaging tool by the proposed algorithm.</description><subject>Algorithms</subject><subject>Cascades</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Defects</subject><subject>Deformation</subject><subject>Image segmentation</subject><subject>Low cost</subject><subject>Maintenance</subject><subject>Manifolds</subject><subject>Multimedia Information Systems</subject><subject>Restoration</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Stereoscopy</subject><subject>Target recognition</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewisTaMH_FjCeUpFbEA1lbiB6RK42CnRf17UgWJFauZxT13RgehcwKXBEBeZUKAUwxEYaGAY32AZqSUDEtJyeG4MwVYlkCO0UnOKwAiSspn6Oa56poQW4edD94OhfP98InXVV8kn4eYqqGJXRFiKrY-7Yo2fmMb81C8stti2zgf8yk6ClWb_dnvnKP3-7u3xSNevjw8La6X2FKhBkyV1wKsBu_rGqjjWkNQpVSy1LXTXiiieBCi5tqJUAdHRSlEsFawmlJL2RxdTL19il-b8TmzipvUjScNJYyUnCnGxxSZUjbFnJMPpk_Nuko7Q8DsVZlJlRlVmb0qo0eGTkwes92HT3_N_0M_Q1VqsA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chan, Din-Yuen</creator><creator>Wu, Ji-Rong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Manifold-defect depth-map restoration for very low-cost S3D videos</title><author>Chan, Din-Yuen ; Wu, Ji-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-28e960c90eebb02d4990f8578759bd9e68184f66b49d6fbfd26566fcc63b22c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cascades</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Defects</topic><topic>Deformation</topic><topic>Image segmentation</topic><topic>Low cost</topic><topic>Maintenance</topic><topic>Manifolds</topic><topic>Multimedia Information Systems</topic><topic>Restoration</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Stereoscopy</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Din-Yuen</creatorcontrib><creatorcontrib>Wu, Ji-Rong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Din-Yuen</au><au>Wu, Ji-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifold-defect depth-map restoration for very low-cost S3D videos</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>79</volume><issue>13-14</issue><spage>8863</spage><epage>8886</epage><pages>8863-8886</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, the proposed algorithm provides a fluent and efficient method for repairing very-low quality depth maps of considerable manifold defects for low-cost stereoscopic 3D (S3D) photographing that such a depth map can be easily yielded by 1st-generation Kinect (Kinect-v1). The corresponding framework cascades two repairing portions named discriminative non-segmentation hole filling and edge rectification-by-deforming. The former can discriminatively fill a variety of depth-invalid holes with no need of practically making attribute-discrimination and target segmentation for depth holes. The main portions of the latter contain edge-shifting-rectification and texture-edge guided dual processing for tailoring possible twisted depth edges. Since the ingredients of proposed algorithm are compactly concatenated according to intimate context, most troublesome defects in Kinect-v1 depths can be tackled. Particularly, the proposed algorithm can obtain the restoring coherency for successive depth maps. A series of experimental results under various photographing scenarios can demonstrate that a single Kinect-v1 device can fast tell on the development of very low-cost S3D imaging tool by the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6804-9</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-04, Vol.79 (13-14), p.8863-8886 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2131543834 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Cascades Computer Communication Networks Computer Science Data Structures and Information Theory Defects Deformation Image segmentation Low cost Maintenance Manifolds Multimedia Information Systems Restoration Special Purpose and Application-Based Systems Stereoscopy Target recognition |
title | Manifold-defect depth-map restoration for very low-cost S3D videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifold-defect%20depth-map%20restoration%20for%20very%20low-cost%20S3D%20videos&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chan,%20Din-Yuen&rft.date=2020-04-01&rft.volume=79&rft.issue=13-14&rft.spage=8863&rft.epage=8886&rft.pages=8863-8886&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6804-9&rft_dat=%3Cproquest_cross%3E2131543834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131543834&rft_id=info:pmid/&rfr_iscdi=true |