Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate
Recent advances in biotechnology have resulted in crops that are tolerant to the synthetic auxin 2,4-D, expanding the weed management versatility of this herbicide. With potential expansions of use, concerns have been raised about the increased risk of herbicide drift, leading to damage to nontarget...
Gespeichert in:
Veröffentlicht in: | Weed technology 2018-10, Vol.32 (5), p.550-556 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 5 |
container_start_page | 550 |
container_title | Weed technology |
container_volume | 32 |
creator | Havens, Patrick L Hillger, David E Hewitt, Andrew J Kruger, Greg R Marchi-Werle, Lia Czaczyk, Zbigniew |
description | Recent advances in biotechnology have resulted in crops that are tolerant to the synthetic auxin 2,4-D, expanding the weed management versatility of this herbicide. With potential expansions of use, concerns have been raised about the increased risk of herbicide drift, leading to damage to nontarget crops. A field-scale study was conducted with the objective to measure drift deposition and the potential for drift reduction conferred by a proprietary premixture formulation of 2,4-D choline salt plus glyphosate dimethylammonium salt compared to an in-tank mixture of 2,4-D dimethylamine salt plus glyphosate potassium salt. Treatments were made with field-scale spray equipment under typical application conditions in McCook, NE, using three widely used nozzle tips. Deposition was captured in triplicate downwind collector lines and assayed for tracer dye and 2,4-D. In comparison to the in-tank mixture, the pre-mixture formulation exhibited lower downwind depositions when applied through a flatfan (TeeJet Extended Range; XR) and air induction (TeeJet Air Induction Extended Range; AIXR) nozzles, but not with a pre-orifice (TeeJet TurboTeeJet Induction; TTI) nozzle. Based upon median deposition at 30m downwind, the pre-mixture formulation reduced drift by 62% and 91%, for the XR and AIXR nozzles, respectively. From a drift reduction perspective, the pre-mixture formulation performance with the AIXR nozzle was equivalent to a much coarser TTI nozzle while still offering sufficient foliar coverage for acceptable weed control. Nomenclature: 2,4-D; glyphosate |
doi_str_mv | 10.1017/wet.2018.55 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2131510703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26567622</jstor_id><sourcerecordid>26567622</sourcerecordid><originalsourceid>FETCH-LOGICAL-b317t-147d953c9dfc1e09843ae42f1e3c3eb605f9cc2033a7400fd8a79fe0438153663</originalsourceid><addsrcrecordid>eNp9UM9LwzAUDqLgnJ48CwVPop0vSdO0R9ncFCZ6UPAWsjbBjqyZSarsvze1w6On9_h-8d6H0DmGCQbMb79VmBDAxYSxAzTCjEFKeAaHaARFCSlQ_n6MTrxfA-CcEBihat4oUydPSvrOqY1qg0-sTmau0aFfprb9imBjW2kS2dZ7JsLBWZPMrdt0Rvb8r4_cZOkseTGdTxZmt_2wXgZ1io60NF6d7ecYvc3vX6cP6fJ58Ti9W6YrinlIccbrktGqrHWFFZRFRqXKiMaKVlStcmC6rCoClMr4E-i6kLzUCjJaYEbznI7R5ZC7dfazUz6Ite1cPNwLgilmGHg0j9H1oKqc9d4pLbau2Ui3ExhE36KILYq-RcFYVF8M6rUP1v1JSc5yHhuM_NXArxprW_Vv1g-XtXtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131510703</pqid></control><display><type>article</type><title>Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate</title><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Havens, Patrick L ; Hillger, David E ; Hewitt, Andrew J ; Kruger, Greg R ; Marchi-Werle, Lia ; Czaczyk, Zbigniew</creator><creatorcontrib>Havens, Patrick L ; Hillger, David E ; Hewitt, Andrew J ; Kruger, Greg R ; Marchi-Werle, Lia ; Czaczyk, Zbigniew</creatorcontrib><description>Recent advances in biotechnology have resulted in crops that are tolerant to the synthetic auxin 2,4-D, expanding the weed management versatility of this herbicide. With potential expansions of use, concerns have been raised about the increased risk of herbicide drift, leading to damage to nontarget crops. A field-scale study was conducted with the objective to measure drift deposition and the potential for drift reduction conferred by a proprietary premixture formulation of 2,4-D choline salt plus glyphosate dimethylammonium salt compared to an in-tank mixture of 2,4-D dimethylamine salt plus glyphosate potassium salt. Treatments were made with field-scale spray equipment under typical application conditions in McCook, NE, using three widely used nozzle tips. Deposition was captured in triplicate downwind collector lines and assayed for tracer dye and 2,4-D. In comparison to the in-tank mixture, the pre-mixture formulation exhibited lower downwind depositions when applied through a flatfan (TeeJet Extended Range; XR) and air induction (TeeJet Air Induction Extended Range; AIXR) nozzles, but not with a pre-orifice (TeeJet TurboTeeJet Induction; TTI) nozzle. Based upon median deposition at 30m downwind, the pre-mixture formulation reduced drift by 62% and 91%, for the XR and AIXR nozzles, respectively. From a drift reduction perspective, the pre-mixture formulation performance with the AIXR nozzle was equivalent to a much coarser TTI nozzle while still offering sufficient foliar coverage for acceptable weed control. Nomenclature: 2,4-D; glyphosate</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1017/wet.2018.55</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>2,4-D ; Biotechnology ; Choline ; Crop damage ; Crops ; Deposition ; Drift ; drift reduction technology ; Formulations ; Glyphosate ; Herbicide drift ; Herbicides ; Laboratories ; Nozzles ; Orifices ; Potassium salts ; Reduction ; Salts ; Tips ; Volatility ; Weed control ; Wheat ; Wind</subject><ispartof>Weed technology, 2018-10, Vol.32 (5), p.550-556</ispartof><rights>Weed Science Society of America, 2018.</rights><rights>Weed Science Society of America, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b317t-147d953c9dfc1e09843ae42f1e3c3eb605f9cc2033a7400fd8a79fe0438153663</citedby><cites>FETCH-LOGICAL-b317t-147d953c9dfc1e09843ae42f1e3c3eb605f9cc2033a7400fd8a79fe0438153663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26567622$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26567622$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Havens, Patrick L</creatorcontrib><creatorcontrib>Hillger, David E</creatorcontrib><creatorcontrib>Hewitt, Andrew J</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Marchi-Werle, Lia</creatorcontrib><creatorcontrib>Czaczyk, Zbigniew</creatorcontrib><title>Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate</title><title>Weed technology</title><addtitle>Weed Technol</addtitle><description>Recent advances in biotechnology have resulted in crops that are tolerant to the synthetic auxin 2,4-D, expanding the weed management versatility of this herbicide. With potential expansions of use, concerns have been raised about the increased risk of herbicide drift, leading to damage to nontarget crops. A field-scale study was conducted with the objective to measure drift deposition and the potential for drift reduction conferred by a proprietary premixture formulation of 2,4-D choline salt plus glyphosate dimethylammonium salt compared to an in-tank mixture of 2,4-D dimethylamine salt plus glyphosate potassium salt. Treatments were made with field-scale spray equipment under typical application conditions in McCook, NE, using three widely used nozzle tips. Deposition was captured in triplicate downwind collector lines and assayed for tracer dye and 2,4-D. In comparison to the in-tank mixture, the pre-mixture formulation exhibited lower downwind depositions when applied through a flatfan (TeeJet Extended Range; XR) and air induction (TeeJet Air Induction Extended Range; AIXR) nozzles, but not with a pre-orifice (TeeJet TurboTeeJet Induction; TTI) nozzle. Based upon median deposition at 30m downwind, the pre-mixture formulation reduced drift by 62% and 91%, for the XR and AIXR nozzles, respectively. From a drift reduction perspective, the pre-mixture formulation performance with the AIXR nozzle was equivalent to a much coarser TTI nozzle while still offering sufficient foliar coverage for acceptable weed control. Nomenclature: 2,4-D; glyphosate</description><subject>2,4-D</subject><subject>Biotechnology</subject><subject>Choline</subject><subject>Crop damage</subject><subject>Crops</subject><subject>Deposition</subject><subject>Drift</subject><subject>drift reduction technology</subject><subject>Formulations</subject><subject>Glyphosate</subject><subject>Herbicide drift</subject><subject>Herbicides</subject><subject>Laboratories</subject><subject>Nozzles</subject><subject>Orifices</subject><subject>Potassium salts</subject><subject>Reduction</subject><subject>Salts</subject><subject>Tips</subject><subject>Volatility</subject><subject>Weed control</subject><subject>Wheat</subject><subject>Wind</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UM9LwzAUDqLgnJ48CwVPop0vSdO0R9ncFCZ6UPAWsjbBjqyZSarsvze1w6On9_h-8d6H0DmGCQbMb79VmBDAxYSxAzTCjEFKeAaHaARFCSlQ_n6MTrxfA-CcEBihat4oUydPSvrOqY1qg0-sTmau0aFfprb9imBjW2kS2dZ7JsLBWZPMrdt0Rvb8r4_cZOkseTGdTxZmt_2wXgZ1io60NF6d7ecYvc3vX6cP6fJ58Ti9W6YrinlIccbrktGqrHWFFZRFRqXKiMaKVlStcmC6rCoClMr4E-i6kLzUCjJaYEbznI7R5ZC7dfazUz6Ite1cPNwLgilmGHg0j9H1oKqc9d4pLbau2Ui3ExhE36KILYq-RcFYVF8M6rUP1v1JSc5yHhuM_NXArxprW_Vv1g-XtXtg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Havens, Patrick L</creator><creator>Hillger, David E</creator><creator>Hewitt, Andrew J</creator><creator>Kruger, Greg R</creator><creator>Marchi-Werle, Lia</creator><creator>Czaczyk, Zbigniew</creator><general>Cambridge University Press</general><general>Weed Science Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20181001</creationdate><title>Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate</title><author>Havens, Patrick L ; Hillger, David E ; Hewitt, Andrew J ; Kruger, Greg R ; Marchi-Werle, Lia ; Czaczyk, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b317t-147d953c9dfc1e09843ae42f1e3c3eb605f9cc2033a7400fd8a79fe0438153663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2,4-D</topic><topic>Biotechnology</topic><topic>Choline</topic><topic>Crop damage</topic><topic>Crops</topic><topic>Deposition</topic><topic>Drift</topic><topic>drift reduction technology</topic><topic>Formulations</topic><topic>Glyphosate</topic><topic>Herbicide drift</topic><topic>Herbicides</topic><topic>Laboratories</topic><topic>Nozzles</topic><topic>Orifices</topic><topic>Potassium salts</topic><topic>Reduction</topic><topic>Salts</topic><topic>Tips</topic><topic>Volatility</topic><topic>Weed control</topic><topic>Wheat</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Havens, Patrick L</creatorcontrib><creatorcontrib>Hillger, David E</creatorcontrib><creatorcontrib>Hewitt, Andrew J</creatorcontrib><creatorcontrib>Kruger, Greg R</creatorcontrib><creatorcontrib>Marchi-Werle, Lia</creatorcontrib><creatorcontrib>Czaczyk, Zbigniew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havens, Patrick L</au><au>Hillger, David E</au><au>Hewitt, Andrew J</au><au>Kruger, Greg R</au><au>Marchi-Werle, Lia</au><au>Czaczyk, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate</atitle><jtitle>Weed technology</jtitle><stitle>Weed Technol</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>32</volume><issue>5</issue><spage>550</spage><epage>556</epage><pages>550-556</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><abstract>Recent advances in biotechnology have resulted in crops that are tolerant to the synthetic auxin 2,4-D, expanding the weed management versatility of this herbicide. With potential expansions of use, concerns have been raised about the increased risk of herbicide drift, leading to damage to nontarget crops. A field-scale study was conducted with the objective to measure drift deposition and the potential for drift reduction conferred by a proprietary premixture formulation of 2,4-D choline salt plus glyphosate dimethylammonium salt compared to an in-tank mixture of 2,4-D dimethylamine salt plus glyphosate potassium salt. Treatments were made with field-scale spray equipment under typical application conditions in McCook, NE, using three widely used nozzle tips. Deposition was captured in triplicate downwind collector lines and assayed for tracer dye and 2,4-D. In comparison to the in-tank mixture, the pre-mixture formulation exhibited lower downwind depositions when applied through a flatfan (TeeJet Extended Range; XR) and air induction (TeeJet Air Induction Extended Range; AIXR) nozzles, but not with a pre-orifice (TeeJet TurboTeeJet Induction; TTI) nozzle. Based upon median deposition at 30m downwind, the pre-mixture formulation reduced drift by 62% and 91%, for the XR and AIXR nozzles, respectively. From a drift reduction perspective, the pre-mixture formulation performance with the AIXR nozzle was equivalent to a much coarser TTI nozzle while still offering sufficient foliar coverage for acceptable weed control. Nomenclature: 2,4-D; glyphosate</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/wet.2018.55</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-037X |
ispartof | Weed technology, 2018-10, Vol.32 (5), p.550-556 |
issn | 0890-037X 1550-2740 |
language | eng |
recordid | cdi_proquest_journals_2131510703 |
source | Jstor Complete Legacy; Cambridge University Press Journals Complete |
subjects | 2,4-D Biotechnology Choline Crop damage Crops Deposition Drift drift reduction technology Formulations Glyphosate Herbicide drift Herbicides Laboratories Nozzles Orifices Potassium salts Reduction Salts Tips Volatility Weed control Wheat Wind |
title | Field Measurements of Drift of Conventional and Drift Control Formulations of 2,4-D Plus Glyphosate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20Measurements%20of%20Drift%20of%20Conventional%20and%20Drift%20Control%20Formulations%20of%202,4-D%20Plus%20Glyphosate&rft.jtitle=Weed%20technology&rft.au=Havens,%20Patrick%20L&rft.date=2018-10-01&rft.volume=32&rft.issue=5&rft.spage=550&rft.epage=556&rft.pages=550-556&rft.issn=0890-037X&rft.eissn=1550-2740&rft_id=info:doi/10.1017/wet.2018.55&rft_dat=%3Cjstor_proqu%3E26567622%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131510703&rft_id=info:pmid/&rft_jstor_id=26567622&rfr_iscdi=true |