Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing on wellbeing
Propensity score methods are an increasingly popular technique for causal inference. To estimate propensity scores, we must model the distribution of the treatment indicator given a vector of covariates. Much work has been done in the case where the covariates are fully observed. Unfortunately, many...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2009-07, Vol.18 (2), p.257-273 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Propensity score methods are an increasingly popular technique for causal inference. To estimate propensity scores, we must model the distribution of the treatment indicator given a vector of covariates. Much work has been done in the case where the covariates are fully observed. Unfortunately, many large scale and complex surveys, such as longitudinal surveys, suffer from missing covariate values. In this paper, we compare three different approaches and their underlying assumptions of handling missing background data in the estimation and use of propensity scores: a complete-case analysis, a pattern-mixture model based approach developed by Rosenbaum and Rubin (J Am Stat Assoc79:516–524, 1984), and a multiple imputation approach. We apply these methods to assess the impact of childbearing events on individuals’ wellbeing in Indonesia, using a sample of women from the Indonesia Family Life Survey. |
---|---|
ISSN: | 1618-2510 1613-981X |
DOI: | 10.1007/s10260-007-0086-0 |