Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions
In this study, the detailed effects of different levels of DME addition on soot formation, evolution and characteristics in flame-wall interactions are studied to improve the energy efficiency and develop soot reduction strategies. A quartz plate which is cooled by the circulating water is uprightly...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2018-12, Vol.164, p.642-654 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | |
container_start_page | 642 |
container_title | Energy (Oxford) |
container_volume | 164 |
creator | Luo, Minye Liu, Dong |
description | In this study, the detailed effects of different levels of DME addition on soot formation, evolution and characteristics in flame-wall interactions are studied to improve the energy efficiency and develop soot reduction strategies. A quartz plate which is cooled by the circulating water is uprightly installed above the ethylene jet diffusion flames to generate the flame-wall interactions. The impinging flame propagates along the surface and a series of soot rings are formed. Soot particles from different regions which represent various combustion stages are sampled and analyzed. The nanostructure of soot is acquired by the high resolution transmission electron spectroscopy (HRTEM). The results of Raman spectroscopy reflect the soot graphitization degree and verify the HRTEM findings. The thermogravimetric analyzer (TGA) is adopted to evaluate the oxidation reactivity of soot particles. The results show that the flame impingement exhibits a significant impact on soot evolution and characteristics. The addition of DME performs well in suppressing soot formation and promoting energy efficiency. The addition of 20% DME suppresses the production of soot particles from post-impingement regions and promotes the oxidation reactivity. However, the promotion of soot formation and the reduction of oxidation reactivity are found in post-impingement regions with 5% DME addition.
•Effects of DME addition on soot formation in flame-wall interactions were studied.•Soot at initially impingement region has amorphous structures.•Soot from out-flame region shows a typical core-shell nanostructure.•The reactivity of soot decreased with 5% DME addition.•Soot reactivity of post-impingement regions increased with 20% DME addition. |
doi_str_mv | 10.1016/j.energy.2018.09.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131210447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218317651</els_id><sourcerecordid>2131210447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-197882dd8090c610d7d261fd82850dc6e6c9a7990d1855e1283a4049c1206e83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPAq7vOZL-SiyDFLxC8eA8hmdWU7UaTbaX_3tT1LISEyfu-M8zD2CVCiYDtzbqkkeL7vhSAsgRVAoojtkDZVUXbyeaYLaBqoWjqWpyys5TWANBIpRZsvO97slPioefOb2j62A883xS5cc5PPow8nxTCxPsQN-bwc81pF4btr2hGx-2HicZOFH2avE3cj7wfzIaKbzMMucpKlrM7nbOT3gyJLv7eJXt7uH9bPRUvr4_Pq7uXwlYdTgWqTkrhnAQFtkVwnRMt9k4K2YCzLbVWmU4pcCibhlDIytRQK4sCWpLVkl3NbT9j-NpSmvQ6bOOYJ2qBFQqEuu6yq55dNoaUIvX6M_qNiXuNoA9g9VrPYPUBrAalM9gcu51jlBfYeYo6WU-jJedjRqld8P83-AHoY4Q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131210447</pqid></control><display><type>article</type><title>Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Minye ; Liu, Dong</creator><creatorcontrib>Luo, Minye ; Liu, Dong</creatorcontrib><description>In this study, the detailed effects of different levels of DME addition on soot formation, evolution and characteristics in flame-wall interactions are studied to improve the energy efficiency and develop soot reduction strategies. A quartz plate which is cooled by the circulating water is uprightly installed above the ethylene jet diffusion flames to generate the flame-wall interactions. The impinging flame propagates along the surface and a series of soot rings are formed. Soot particles from different regions which represent various combustion stages are sampled and analyzed. The nanostructure of soot is acquired by the high resolution transmission electron spectroscopy (HRTEM). The results of Raman spectroscopy reflect the soot graphitization degree and verify the HRTEM findings. The thermogravimetric analyzer (TGA) is adopted to evaluate the oxidation reactivity of soot particles. The results show that the flame impingement exhibits a significant impact on soot evolution and characteristics. The addition of DME performs well in suppressing soot formation and promoting energy efficiency. The addition of 20% DME suppresses the production of soot particles from post-impingement regions and promotes the oxidation reactivity. However, the promotion of soot formation and the reduction of oxidation reactivity are found in post-impingement regions with 5% DME addition.
•Effects of DME addition on soot formation in flame-wall interactions were studied.•Soot at initially impingement region has amorphous structures.•Soot from out-flame region shows a typical core-shell nanostructure.•The reactivity of soot decreased with 5% DME addition.•Soot reactivity of post-impingement regions increased with 20% DME addition.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.09.012</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Airborne particulates ; Diffusion flames ; Dimethyl ether ; Energy efficiency ; Evolution ; Flame-wall interaction ; Graphitization ; Impingement ; Nanostructure ; Nanostructured materials ; Oxidation ; Oxidation reactivity ; Power efficiency ; Raman spectroscopy ; Reactivity ; Reduction ; Soot ; Spectroscopy ; Thermogravimetric analysis ; Transmission electron microscopy ; Water circulation</subject><ispartof>Energy (Oxford), 2018-12, Vol.164, p.642-654</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-197882dd8090c610d7d261fd82850dc6e6c9a7990d1855e1283a4049c1206e83</citedby><cites>FETCH-LOGICAL-c371t-197882dd8090c610d7d261fd82850dc6e6c9a7990d1855e1283a4049c1206e83</cites><orcidid>0000-0002-9624-0265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544218317651$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luo, Minye</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions</title><title>Energy (Oxford)</title><description>In this study, the detailed effects of different levels of DME addition on soot formation, evolution and characteristics in flame-wall interactions are studied to improve the energy efficiency and develop soot reduction strategies. A quartz plate which is cooled by the circulating water is uprightly installed above the ethylene jet diffusion flames to generate the flame-wall interactions. The impinging flame propagates along the surface and a series of soot rings are formed. Soot particles from different regions which represent various combustion stages are sampled and analyzed. The nanostructure of soot is acquired by the high resolution transmission electron spectroscopy (HRTEM). The results of Raman spectroscopy reflect the soot graphitization degree and verify the HRTEM findings. The thermogravimetric analyzer (TGA) is adopted to evaluate the oxidation reactivity of soot particles. The results show that the flame impingement exhibits a significant impact on soot evolution and characteristics. The addition of DME performs well in suppressing soot formation and promoting energy efficiency. The addition of 20% DME suppresses the production of soot particles from post-impingement regions and promotes the oxidation reactivity. However, the promotion of soot formation and the reduction of oxidation reactivity are found in post-impingement regions with 5% DME addition.
•Effects of DME addition on soot formation in flame-wall interactions were studied.•Soot at initially impingement region has amorphous structures.•Soot from out-flame region shows a typical core-shell nanostructure.•The reactivity of soot decreased with 5% DME addition.•Soot reactivity of post-impingement regions increased with 20% DME addition.</description><subject>Airborne particulates</subject><subject>Diffusion flames</subject><subject>Dimethyl ether</subject><subject>Energy efficiency</subject><subject>Evolution</subject><subject>Flame-wall interaction</subject><subject>Graphitization</subject><subject>Impingement</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Oxidation</subject><subject>Oxidation reactivity</subject><subject>Power efficiency</subject><subject>Raman spectroscopy</subject><subject>Reactivity</subject><subject>Reduction</subject><subject>Soot</subject><subject>Spectroscopy</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>Water circulation</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEPAq7vOZL-SiyDFLxC8eA8hmdWU7UaTbaX_3tT1LISEyfu-M8zD2CVCiYDtzbqkkeL7vhSAsgRVAoojtkDZVUXbyeaYLaBqoWjqWpyys5TWANBIpRZsvO97slPioefOb2j62A883xS5cc5PPow8nxTCxPsQN-bwc81pF4btr2hGx-2HicZOFH2avE3cj7wfzIaKbzMMucpKlrM7nbOT3gyJLv7eJXt7uH9bPRUvr4_Pq7uXwlYdTgWqTkrhnAQFtkVwnRMt9k4K2YCzLbVWmU4pcCibhlDIytRQK4sCWpLVkl3NbT9j-NpSmvQ6bOOYJ2qBFQqEuu6yq55dNoaUIvX6M_qNiXuNoA9g9VrPYPUBrAalM9gcu51jlBfYeYo6WU-jJedjRqld8P83-AHoY4Q0</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Luo, Minye</creator><creator>Liu, Dong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9624-0265</orcidid></search><sort><creationdate>20181201</creationdate><title>Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions</title><author>Luo, Minye ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-197882dd8090c610d7d261fd82850dc6e6c9a7990d1855e1283a4049c1206e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Airborne particulates</topic><topic>Diffusion flames</topic><topic>Dimethyl ether</topic><topic>Energy efficiency</topic><topic>Evolution</topic><topic>Flame-wall interaction</topic><topic>Graphitization</topic><topic>Impingement</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Oxidation</topic><topic>Oxidation reactivity</topic><topic>Power efficiency</topic><topic>Raman spectroscopy</topic><topic>Reactivity</topic><topic>Reduction</topic><topic>Soot</topic><topic>Spectroscopy</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Minye</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Minye</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>164</volume><spage>642</spage><epage>654</epage><pages>642-654</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this study, the detailed effects of different levels of DME addition on soot formation, evolution and characteristics in flame-wall interactions are studied to improve the energy efficiency and develop soot reduction strategies. A quartz plate which is cooled by the circulating water is uprightly installed above the ethylene jet diffusion flames to generate the flame-wall interactions. The impinging flame propagates along the surface and a series of soot rings are formed. Soot particles from different regions which represent various combustion stages are sampled and analyzed. The nanostructure of soot is acquired by the high resolution transmission electron spectroscopy (HRTEM). The results of Raman spectroscopy reflect the soot graphitization degree and verify the HRTEM findings. The thermogravimetric analyzer (TGA) is adopted to evaluate the oxidation reactivity of soot particles. The results show that the flame impingement exhibits a significant impact on soot evolution and characteristics. The addition of DME performs well in suppressing soot formation and promoting energy efficiency. The addition of 20% DME suppresses the production of soot particles from post-impingement regions and promotes the oxidation reactivity. However, the promotion of soot formation and the reduction of oxidation reactivity are found in post-impingement regions with 5% DME addition.
•Effects of DME addition on soot formation in flame-wall interactions were studied.•Soot at initially impingement region has amorphous structures.•Soot from out-flame region shows a typical core-shell nanostructure.•The reactivity of soot decreased with 5% DME addition.•Soot reactivity of post-impingement regions increased with 20% DME addition.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.09.012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9624-0265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2018-12, Vol.164, p.642-654 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2131210447 |
source | Elsevier ScienceDirect Journals |
subjects | Airborne particulates Diffusion flames Dimethyl ether Energy efficiency Evolution Flame-wall interaction Graphitization Impingement Nanostructure Nanostructured materials Oxidation Oxidation reactivity Power efficiency Raman spectroscopy Reactivity Reduction Soot Spectroscopy Thermogravimetric analysis Transmission electron microscopy Water circulation |
title | Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20dimethyl%20ether%20addition%20on%20soot%20formation,%20evolution%20and%20characteristics%20in%20flame-wall%20interactions&rft.jtitle=Energy%20(Oxford)&rft.au=Luo,%20Minye&rft.date=2018-12-01&rft.volume=164&rft.spage=642&rft.epage=654&rft.pages=642-654&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.09.012&rft_dat=%3Cproquest_cross%3E2131210447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131210447&rft_id=info:pmid/&rft_els_id=S0360544218317651&rfr_iscdi=true |