Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function
AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed mod...
Gespeichert in:
Veröffentlicht in: | Journal of structural engineering (New York, N.Y.) N.Y.), 2019-01, Vol.145 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of structural engineering (New York, N.Y.) |
container_volume | 145 |
creator | Huang, Bo-Tao Li, Qing-Hua Xu, Shi-Lang |
description | AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials. |
doi_str_mv | 10.1061/(ASCE)ST.1943-541X.0002237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131074283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131074283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9DkQveuiEAv3jbdZVTWY0bkbjhQAF06UrE9qD316aTT15evOS3_PjzQPAKUYTjBJ8eT5dFLOLxXKCc0oiRvHbBCEUxyTdA6Pft30wQikhUU4pOwRH3q9CKGU4G4H3UnT1R6_hjTbWrcNiW_hgK91Aa-BTI-oWiraCZS21i5513YaY0hUsbKuc7jS8Fj6sgXrVteybBpZ9q4aaY3BgROP1yW6OwUs5WxZ30fzx9r6YziNBSNqFAxFG0hCcMiYyFGaFFUYCUVmxXFIlpEgzQo1GOTOJVDSWmaGsynORKCPIGJxtezfOfvbad3xle9eGL3mMCUYpjTMSUlfblHLWe6cN37h6LdwXx4gPLjkfXPLFkg_e-OCN71wGONnCwiv9V_9D_g9-A7SPeHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131074283</pqid></control><display><type>article</type><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</creator><creatorcontrib>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</creatorcontrib><description>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0002237</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Deformation ; Fatigue life ; Fatigue tests ; Fiber reinforced concretes ; Materials fatigue ; Mathematical models ; Parameters ; Reinforced concrete ; Structural engineering ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</citedby><cites>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0002237$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0002237$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Huang, Bo-Tao</creatorcontrib><creatorcontrib>Li, Qing-Hua</creatorcontrib><creatorcontrib>Xu, Shi-Lang</creatorcontrib><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</description><subject>Deformation</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fiber reinforced concretes</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Reinforced concrete</subject><subject>Structural engineering</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYh4nRxDn9DkQveuiEAv3jbdZVTWY0bkbjhQAF06UrE9qD316aTT15evOS3_PjzQPAKUYTjBJ8eT5dFLOLxXKCc0oiRvHbBCEUxyTdA6Pft30wQikhUU4pOwRH3q9CKGU4G4H3UnT1R6_hjTbWrcNiW_hgK91Aa-BTI-oWiraCZS21i5513YaY0hUsbKuc7jS8Fj6sgXrVteybBpZ9q4aaY3BgROP1yW6OwUs5WxZ30fzx9r6YziNBSNqFAxFG0hCcMiYyFGaFFUYCUVmxXFIlpEgzQo1GOTOJVDSWmaGsynORKCPIGJxtezfOfvbad3xle9eGL3mMCUYpjTMSUlfblHLWe6cN37h6LdwXx4gPLjkfXPLFkg_e-OCN71wGONnCwiv9V_9D_g9-A7SPeHo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huang, Bo-Tao</creator><creator>Li, Qing-Hua</creator><creator>Xu, Shi-Lang</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190101</creationdate><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><author>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deformation</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fiber reinforced concretes</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Reinforced concrete</topic><topic>Structural engineering</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bo-Tao</creatorcontrib><creatorcontrib>Li, Qing-Hua</creatorcontrib><creatorcontrib>Xu, Shi-Lang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bo-Tao</au><au>Li, Qing-Hua</au><au>Xu, Shi-Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>145</volume><issue>1</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0002237</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9445 |
ispartof | Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1) |
issn | 0733-9445 1943-541X |
language | eng |
recordid | cdi_proquest_journals_2131074283 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Deformation Fatigue life Fatigue tests Fiber reinforced concretes Materials fatigue Mathematical models Parameters Reinforced concrete Structural engineering Technical Papers |
title | Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Deformation%20Model%20of%20Plain%20and%20Fiber-Reinforced%20Concrete%20Based%20on%20Weibull%20Function&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Huang,%20Bo-Tao&rft.date=2019-01-01&rft.volume=145&rft.issue=1&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0002237&rft_dat=%3Cproquest_cross%3E2131074283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131074283&rft_id=info:pmid/&rfr_iscdi=true |