Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function

AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2019-01, Vol.145 (1)
Hauptverfasser: Huang, Bo-Tao, Li, Qing-Hua, Xu, Shi-Lang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of structural engineering (New York, N.Y.)
container_volume 145
creator Huang, Bo-Tao
Li, Qing-Hua
Xu, Shi-Lang
description AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0002237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131074283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131074283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9DkQveuiEAv3jbdZVTWY0bkbjhQAF06UrE9qD316aTT15evOS3_PjzQPAKUYTjBJ8eT5dFLOLxXKCc0oiRvHbBCEUxyTdA6Pft30wQikhUU4pOwRH3q9CKGU4G4H3UnT1R6_hjTbWrcNiW_hgK91Aa-BTI-oWiraCZS21i5513YaY0hUsbKuc7jS8Fj6sgXrVteybBpZ9q4aaY3BgROP1yW6OwUs5WxZ30fzx9r6YziNBSNqFAxFG0hCcMiYyFGaFFUYCUVmxXFIlpEgzQo1GOTOJVDSWmaGsynORKCPIGJxtezfOfvbad3xle9eGL3mMCUYpjTMSUlfblHLWe6cN37h6LdwXx4gPLjkfXPLFkg_e-OCN71wGONnCwiv9V_9D_g9-A7SPeHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131074283</pqid></control><display><type>article</type><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</creator><creatorcontrib>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</creatorcontrib><description>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0002237</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Deformation ; Fatigue life ; Fatigue tests ; Fiber reinforced concretes ; Materials fatigue ; Mathematical models ; Parameters ; Reinforced concrete ; Structural engineering ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</citedby><cites>FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0002237$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0002237$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Huang, Bo-Tao</creatorcontrib><creatorcontrib>Li, Qing-Hua</creatorcontrib><creatorcontrib>Xu, Shi-Lang</creatorcontrib><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</description><subject>Deformation</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fiber reinforced concretes</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Reinforced concrete</subject><subject>Structural engineering</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYh4nRxDn9DkQveuiEAv3jbdZVTWY0bkbjhQAF06UrE9qD316aTT15evOS3_PjzQPAKUYTjBJ8eT5dFLOLxXKCc0oiRvHbBCEUxyTdA6Pft30wQikhUU4pOwRH3q9CKGU4G4H3UnT1R6_hjTbWrcNiW_hgK91Aa-BTI-oWiraCZS21i5513YaY0hUsbKuc7jS8Fj6sgXrVteybBpZ9q4aaY3BgROP1yW6OwUs5WxZ30fzx9r6YziNBSNqFAxFG0hCcMiYyFGaFFUYCUVmxXFIlpEgzQo1GOTOJVDSWmaGsynORKCPIGJxtezfOfvbad3xle9eGL3mMCUYpjTMSUlfblHLWe6cN37h6LdwXx4gPLjkfXPLFkg_e-OCN71wGONnCwiv9V_9D_g9-A7SPeHo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huang, Bo-Tao</creator><creator>Li, Qing-Hua</creator><creator>Xu, Shi-Lang</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190101</creationdate><title>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</title><author>Huang, Bo-Tao ; Li, Qing-Hua ; Xu, Shi-Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-54010bf31755a80317d1c10a04bd59b4caba7834fe095f6bc42b8f45d99a6cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deformation</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fiber reinforced concretes</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Reinforced concrete</topic><topic>Structural engineering</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bo-Tao</creatorcontrib><creatorcontrib>Li, Qing-Hua</creatorcontrib><creatorcontrib>Xu, Shi-Lang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bo-Tao</au><au>Li, Qing-Hua</au><au>Xu, Shi-Lang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>145</volume><issue>1</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractA novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0002237</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1)
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_journals_2131074283
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Deformation
Fatigue life
Fatigue tests
Fiber reinforced concretes
Materials fatigue
Mathematical models
Parameters
Reinforced concrete
Structural engineering
Technical Papers
title Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Deformation%20Model%20of%20Plain%20and%20Fiber-Reinforced%20Concrete%20Based%20on%20Weibull%20Function&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Huang,%20Bo-Tao&rft.date=2019-01-01&rft.volume=145&rft.issue=1&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0002237&rft_dat=%3Cproquest_cross%3E2131074283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131074283&rft_id=info:pmid/&rfr_iscdi=true