Sparse convolution quadrature for time domain boundary integral formulations of the wave equation

Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2009-01, Vol.29 (1), p.158-179
Hauptverfasser: Hackbusch, W., Kress, W., Sauter, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 158
container_title IMA journal of numerical analysis
container_volume 29
creator Hackbusch, W.
Kress, W.
Sauter, S. A.
description Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.
doi_str_mv 10.1093/imanum/drm044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213084086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drm044</oup_id><sourcerecordid>1627361231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpoNukx9xFIZCLm7GkyNIxLPliQ3PIByUXMZal1qltbSQryf77evGSa08Dw_M-M7yEHJbwowTNT9oeh9yfNLEHIT6RRSmkKLgU7DNZAKtYIXSlv5CvKT0DgJAVLAjerTEmR20YXkOXxzYM9CVjE3HM0VEfIh3b3tEm9NgOtA55aDBuaDuM7nfEbkv0ucNtMNHg6fjH0Td8ddRNmu32gOx57JL7tpv75OHi_H55VdzcXl4vz24KKyoYC64qqaFEz61wzDZKK1Wi1KcN1oI5piXWNdfO1hK98rLm6EApra0Cjw3wffJ99q5jeMkujeY55DhMJw0rOSgBSk5QMUM2hpSi82Ydp9rixpRgtiWauUQzlzjxRzspJoudjzjYNn2EWCm10sAn7njmQl7_V7l7oU2je_-AMf41suLVqbn69WQYW_28k49Ls-L_AKLKk7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213084086</pqid></control><display><type>article</type><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</creator><creatorcontrib>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</creatorcontrib><description>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drm044</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximations and expansions ; boundary element method ; convolution quadrature ; Exact sciences and technology ; Integral equations ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Partial differential equations ; retarded potentials ; Sciences and techniques of general use ; sparse representation</subject><ispartof>IMA journal of numerical analysis, 2009-01, Vol.29 (1), p.158-179</ispartof><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2009 INIST-CNRS</rights><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21698903$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hackbusch, W.</creatorcontrib><creatorcontrib>Kress, W.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><title>IMA journal of numerical analysis</title><description>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</description><subject>Approximations and expansions</subject><subject>boundary element method</subject><subject>convolution quadrature</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Partial differential equations</subject><subject>retarded potentials</subject><subject>Sciences and techniques of general use</subject><subject>sparse representation</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpoNukx9xFIZCLm7GkyNIxLPliQ3PIByUXMZal1qltbSQryf77evGSa08Dw_M-M7yEHJbwowTNT9oeh9yfNLEHIT6RRSmkKLgU7DNZAKtYIXSlv5CvKT0DgJAVLAjerTEmR20YXkOXxzYM9CVjE3HM0VEfIh3b3tEm9NgOtA55aDBuaDuM7nfEbkv0ucNtMNHg6fjH0Td8ddRNmu32gOx57JL7tpv75OHi_H55VdzcXl4vz24KKyoYC64qqaFEz61wzDZKK1Wi1KcN1oI5piXWNdfO1hK98rLm6EApra0Cjw3wffJ99q5jeMkujeY55DhMJw0rOSgBSk5QMUM2hpSi82Ydp9rixpRgtiWauUQzlzjxRzspJoudjzjYNn2EWCm10sAn7njmQl7_V7l7oU2je_-AMf41suLVqbn69WQYW_28k49Ls-L_AKLKk7Y</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Hackbusch, W.</creator><creator>Kress, W.</creator><creator>Sauter, S. A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><author>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximations and expansions</topic><topic>boundary element method</topic><topic>convolution quadrature</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Partial differential equations</topic><topic>retarded potentials</topic><topic>Sciences and techniques of general use</topic><topic>sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hackbusch, W.</creatorcontrib><creatorcontrib>Kress, W.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hackbusch, W.</au><au>Kress, W.</au><au>Sauter, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>29</volume><issue>1</issue><spage>158</spage><epage>179</epage><pages>158-179</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drm044</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2009-01, Vol.29 (1), p.158-179
issn 0272-4979
1464-3642
language eng
recordid cdi_proquest_journals_213084086
source Oxford University Press Journals All Titles (1996-Current)
subjects Approximations and expansions
boundary element method
convolution quadrature
Exact sciences and technology
Integral equations
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Partial differential equations
retarded potentials
Sciences and techniques of general use
sparse representation
title Sparse convolution quadrature for time domain boundary integral formulations of the wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20convolution%20quadrature%20for%20time%20domain%20boundary%20integral%20formulations%20of%20the%20wave%20equation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Hackbusch,%20W.&rft.date=2009-01-01&rft.volume=29&rft.issue=1&rft.spage=158&rft.epage=179&rft.pages=158-179&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drm044&rft_dat=%3Cproquest_cross%3E1627361231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213084086&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drm044&rfr_iscdi=true