Sparse convolution quadrature for time domain boundary integral formulations of the wave equation
Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin bou...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2009-01, Vol.29 (1), p.158-179 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 158 |
container_title | IMA journal of numerical analysis |
container_volume | 29 |
creator | Hackbusch, W. Kress, W. Sauter, S. A. |
description | Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space. |
doi_str_mv | 10.1093/imanum/drm044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213084086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drm044</oup_id><sourcerecordid>1627361231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpoNukx9xFIZCLm7GkyNIxLPliQ3PIByUXMZal1qltbSQryf77evGSa08Dw_M-M7yEHJbwowTNT9oeh9yfNLEHIT6RRSmkKLgU7DNZAKtYIXSlv5CvKT0DgJAVLAjerTEmR20YXkOXxzYM9CVjE3HM0VEfIh3b3tEm9NgOtA55aDBuaDuM7nfEbkv0ucNtMNHg6fjH0Td8ddRNmu32gOx57JL7tpv75OHi_H55VdzcXl4vz24KKyoYC64qqaFEz61wzDZKK1Wi1KcN1oI5piXWNdfO1hK98rLm6EApra0Cjw3wffJ99q5jeMkujeY55DhMJw0rOSgBSk5QMUM2hpSi82Ydp9rixpRgtiWauUQzlzjxRzspJoudjzjYNn2EWCm10sAn7njmQl7_V7l7oU2je_-AMf41suLVqbn69WQYW_28k49Ls-L_AKLKk7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213084086</pqid></control><display><type>article</type><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</creator><creatorcontrib>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</creatorcontrib><description>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drm044</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximations and expansions ; boundary element method ; convolution quadrature ; Exact sciences and technology ; Integral equations ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Partial differential equations ; retarded potentials ; Sciences and techniques of general use ; sparse representation</subject><ispartof>IMA journal of numerical analysis, 2009-01, Vol.29 (1), p.158-179</ispartof><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2009 INIST-CNRS</rights><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21698903$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hackbusch, W.</creatorcontrib><creatorcontrib>Kress, W.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><title>IMA journal of numerical analysis</title><description>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</description><subject>Approximations and expansions</subject><subject>boundary element method</subject><subject>convolution quadrature</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Partial differential equations</subject><subject>retarded potentials</subject><subject>Sciences and techniques of general use</subject><subject>sparse representation</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpoNukx9xFIZCLm7GkyNIxLPliQ3PIByUXMZal1qltbSQryf77evGSa08Dw_M-M7yEHJbwowTNT9oeh9yfNLEHIT6RRSmkKLgU7DNZAKtYIXSlv5CvKT0DgJAVLAjerTEmR20YXkOXxzYM9CVjE3HM0VEfIh3b3tEm9NgOtA55aDBuaDuM7nfEbkv0ucNtMNHg6fjH0Td8ddRNmu32gOx57JL7tpv75OHi_H55VdzcXl4vz24KKyoYC64qqaFEz61wzDZKK1Wi1KcN1oI5piXWNdfO1hK98rLm6EApra0Cjw3wffJ99q5jeMkujeY55DhMJw0rOSgBSk5QMUM2hpSi82Ydp9rixpRgtiWauUQzlzjxRzspJoudjzjYNn2EWCm10sAn7njmQl7_V7l7oU2je_-AMf41suLVqbn69WQYW_28k49Ls-L_AKLKk7Y</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Hackbusch, W.</creator><creator>Kress, W.</creator><creator>Sauter, S. A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</title><author>Hackbusch, W. ; Kress, W. ; Sauter, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3876901af3c4e2cd89881a695dab42e296abb39ecb6af8f6b3ae08899c80fad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximations and expansions</topic><topic>boundary element method</topic><topic>convolution quadrature</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Partial differential equations</topic><topic>retarded potentials</topic><topic>Sciences and techniques of general use</topic><topic>sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hackbusch, W.</creatorcontrib><creatorcontrib>Kress, W.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hackbusch, W.</au><au>Kress, W.</au><au>Sauter, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse convolution quadrature for time domain boundary integral formulations of the wave equation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>29</volume><issue>1</issue><spage>158</spage><epage>179</epage><pages>158-179</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem, we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a priori cut-off strategy where small entries of the system matrices are replaced by zero. The threshold for the cut-off is determined by an a priori analysis which will be developed in this paper. This analysis will also allow to estimate the effect of additional perturbations such as panel clustering and numerical integration on the overall discretization error. This method reduces the storage complexity for time domain integral equations from O(M2N) to O(M2N½ logM), where N denotes the number of time steps and M is the dimension of the boundary element space.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drm044</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2009-01, Vol.29 (1), p.158-179 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_proquest_journals_213084086 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Approximations and expansions boundary element method convolution quadrature Exact sciences and technology Integral equations Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Partial differential equations retarded potentials Sciences and techniques of general use sparse representation |
title | Sparse convolution quadrature for time domain boundary integral formulations of the wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20convolution%20quadrature%20for%20time%20domain%20boundary%20integral%20formulations%20of%20the%20wave%20equation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Hackbusch,%20W.&rft.date=2009-01-01&rft.volume=29&rft.issue=1&rft.spage=158&rft.epage=179&rft.pages=158-179&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drm044&rft_dat=%3Cproquest_cross%3E1627361231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213084086&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drm044&rfr_iscdi=true |