Weathering Controlled Landslide in Deccan Traps: Insight from Mahabaleshwar, Maharashtra

Landslide is one of the devastating natural phenomenon that threatens human life and property. Every year a number of persons lost their lives due to the landslides. Therefore, a better understanding and characterization of landslide is very essential for adopting mitigation strategies to contain th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Geological Society of India 2018-11, Vol.92 (5), p.555-561
Hauptverfasser: Joshi, Mayank, Rajappan, S., Rajan, P. Prasobh, Mathai, J., Sankar, G., Nandakumar, V., Kumar, V. Anil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landslide is one of the devastating natural phenomenon that threatens human life and property. Every year a number of persons lost their lives due to the landslides. Therefore, a better understanding and characterization of landslide is very essential for adopting mitigation strategies to contain the adversities of this natural hazard. Information on landslides from different climatic setup are very essential for better understanding of the influence of weathering, rainfall, or topography on landslide generation. Weathering is one of the important causative factor for landslide generation in the moderate topography or inactive mountainous terrain. The Western Ghats including the Deccan Traps, an inactive mountain range, receives torrential rainfall. Intense rainfall in these areas enhances the weathering processes and fabricates thick soil covers. Mahabaleshwar area, Maharashtra was chosen as a case study, where high elevated part is covered by lateritic layer and each lava flow unit is separated by a thin weathered bed of red bole. The area experiences series of landslides during the summer monsoon months. Mainly two types of landslides have been identified in the area confined with the red bole bed and powdery lateritic soil. The first type of landslides occur at higher elevations (≥1200m) where horizontal beds of permeable laterites underlined by impermeable thick basalt beds. The rain water infiltrates down and spread laterally within the permeable lateritic beds. It finally spouts at lower plateau elevations and triggers mainly debris flows. The other category of landslides occurs where the weathered red bole bed separates two successive lava flows. The percolating water from the secondary porosities (joints and inter connected vugs) comes out from the contact zones of basalt and red bole bed in the form of seepages. It erodes the red bole bed and as a result the overlying masses hang and consequently lead to rock fall. The Chemical Index of Alteration (CIA) of the representative samples from landslide locations indicates significant weathering. The CIA values for the fine lateritic soil are up to 98% whereas for the red bole bed it varies from 77 to 85%. This suggests a high chemical weathering and higher erodibility. The association of active landslide locations with the red bole bed and fine lateritic soil suggests a close relation between weathering and landslide occurrences in the area.
ISSN:0016-7622
0974-6889
DOI:10.1007/s12594-018-1067-7