The distillation curve and sooting propensity of a typical jet fuel
•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusi...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2019-01, Vol.235, p.350-362 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | |
container_start_page | 350 |
container_title | Fuel (Guildford) |
container_volume | 235 |
creator | Saggese, Chiara Singh, Ajay V. Xue, Xin Chu, Carson Kholghy, Mohammad Reza Zhang, Tongfeng Camacho, Joaquin Giaccai, Jennifer Miller, J. Houston Thomson, Murray J. Sung, Chih-Jen Wang, Hai |
description | •Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations.
Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed. |
doi_str_mv | 10.1016/j.fuel.2018.07.099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130773117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118312985</els_id><sourcerecordid>2130773117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB160vzaRpwY0MfsGAm3EdYvKiKbWpSSrMv7dlXLt6m3PfPVxCrhmUDFh925Vuwr6sgDUlyBLa9oSsWCN5IZngp2QFM1VUvGbn5CKlDgBkIzYrst1_IrU-Zd_3OvswUDPFH6R6sDSFkP3wQccYRhySzwcaHNU0H0ZvdE87zHSpvSRnTvcJr_7umrw9Puy3z8Xu9elle78rDK9FLlqQ3CAYY2QtuXCsFaaSdSsF1K0WDje60taCe5dorXUcZN1UZmOMQOAO-ZrcHP_OQt8Tpqy6MMVhrlQVm2nJGZMzVR0pE0NKEZ0ao__S8aAYqGUs1anFWi1jKZBqHmsO3R1DOPv_eIwqGY-DQesjmqxs8P_FfwFqX3Mi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130773117</pqid></control><display><type>article</type><title>The distillation curve and sooting propensity of a typical jet fuel</title><source>Elsevier ScienceDirect Journals</source><creator>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</creator><creatorcontrib>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</creatorcontrib><description>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations.
Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.07.099</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aromatic compounds ; Counterflow ; Cyclic compounds ; Diffusion flames ; Distillates ; Distillation ; Distillation curve ; Distribution functions ; Flame ; Fuels ; Jet engine fuels ; Jet fuel ; Molecular weight ; Nucleation ; Particle size ; Particle size distribution ; Size distribution ; Soot</subject><ispartof>Fuel (Guildford), 2019-01, Vol.235, p.350-362</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</citedby><cites>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</cites><orcidid>0000-0002-0554-1143 ; 0000-0002-4043-1054 ; 0000-0002-7959-7238 ; 0000-0002-7644-4308 ; 0000-0002-5481-0442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.07.099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Saggese, Chiara</creatorcontrib><creatorcontrib>Singh, Ajay V.</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Chu, Carson</creatorcontrib><creatorcontrib>Kholghy, Mohammad Reza</creatorcontrib><creatorcontrib>Zhang, Tongfeng</creatorcontrib><creatorcontrib>Camacho, Joaquin</creatorcontrib><creatorcontrib>Giaccai, Jennifer</creatorcontrib><creatorcontrib>Miller, J. Houston</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><title>The distillation curve and sooting propensity of a typical jet fuel</title><title>Fuel (Guildford)</title><description>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations.
Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</description><subject>Aromatic compounds</subject><subject>Counterflow</subject><subject>Cyclic compounds</subject><subject>Diffusion flames</subject><subject>Distillates</subject><subject>Distillation</subject><subject>Distillation curve</subject><subject>Distribution functions</subject><subject>Flame</subject><subject>Fuels</subject><subject>Jet engine fuels</subject><subject>Jet fuel</subject><subject>Molecular weight</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Size distribution</subject><subject>Soot</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB160vzaRpwY0MfsGAm3EdYvKiKbWpSSrMv7dlXLt6m3PfPVxCrhmUDFh925Vuwr6sgDUlyBLa9oSsWCN5IZngp2QFM1VUvGbn5CKlDgBkIzYrst1_IrU-Zd_3OvswUDPFH6R6sDSFkP3wQccYRhySzwcaHNU0H0ZvdE87zHSpvSRnTvcJr_7umrw9Puy3z8Xu9elle78rDK9FLlqQ3CAYY2QtuXCsFaaSdSsF1K0WDje60taCe5dorXUcZN1UZmOMQOAO-ZrcHP_OQt8Tpqy6MMVhrlQVm2nJGZMzVR0pE0NKEZ0ao__S8aAYqGUs1anFWi1jKZBqHmsO3R1DOPv_eIwqGY-DQesjmqxs8P_FfwFqX3Mi</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Saggese, Chiara</creator><creator>Singh, Ajay V.</creator><creator>Xue, Xin</creator><creator>Chu, Carson</creator><creator>Kholghy, Mohammad Reza</creator><creator>Zhang, Tongfeng</creator><creator>Camacho, Joaquin</creator><creator>Giaccai, Jennifer</creator><creator>Miller, J. Houston</creator><creator>Thomson, Murray J.</creator><creator>Sung, Chih-Jen</creator><creator>Wang, Hai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid><orcidid>https://orcid.org/0000-0002-4043-1054</orcidid><orcidid>https://orcid.org/0000-0002-7959-7238</orcidid><orcidid>https://orcid.org/0000-0002-7644-4308</orcidid><orcidid>https://orcid.org/0000-0002-5481-0442</orcidid></search><sort><creationdate>20190101</creationdate><title>The distillation curve and sooting propensity of a typical jet fuel</title><author>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Counterflow</topic><topic>Cyclic compounds</topic><topic>Diffusion flames</topic><topic>Distillates</topic><topic>Distillation</topic><topic>Distillation curve</topic><topic>Distribution functions</topic><topic>Flame</topic><topic>Fuels</topic><topic>Jet engine fuels</topic><topic>Jet fuel</topic><topic>Molecular weight</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Size distribution</topic><topic>Soot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saggese, Chiara</creatorcontrib><creatorcontrib>Singh, Ajay V.</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Chu, Carson</creatorcontrib><creatorcontrib>Kholghy, Mohammad Reza</creatorcontrib><creatorcontrib>Zhang, Tongfeng</creatorcontrib><creatorcontrib>Camacho, Joaquin</creatorcontrib><creatorcontrib>Giaccai, Jennifer</creatorcontrib><creatorcontrib>Miller, J. Houston</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saggese, Chiara</au><au>Singh, Ajay V.</au><au>Xue, Xin</au><au>Chu, Carson</au><au>Kholghy, Mohammad Reza</au><au>Zhang, Tongfeng</au><au>Camacho, Joaquin</au><au>Giaccai, Jennifer</au><au>Miller, J. Houston</au><au>Thomson, Murray J.</au><au>Sung, Chih-Jen</au><au>Wang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distillation curve and sooting propensity of a typical jet fuel</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>235</volume><spage>350</spage><epage>362</epage><pages>350-362</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations.
Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.07.099</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid><orcidid>https://orcid.org/0000-0002-4043-1054</orcidid><orcidid>https://orcid.org/0000-0002-7959-7238</orcidid><orcidid>https://orcid.org/0000-0002-7644-4308</orcidid><orcidid>https://orcid.org/0000-0002-5481-0442</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-01, Vol.235, p.350-362 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2130773117 |
source | Elsevier ScienceDirect Journals |
subjects | Aromatic compounds Counterflow Cyclic compounds Diffusion flames Distillates Distillation Distillation curve Distribution functions Flame Fuels Jet engine fuels Jet fuel Molecular weight Nucleation Particle size Particle size distribution Size distribution Soot |
title | The distillation curve and sooting propensity of a typical jet fuel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distillation%20curve%20and%20sooting%20propensity%20of%20a%20typical%20jet%20fuel&rft.jtitle=Fuel%20(Guildford)&rft.au=Saggese,%20Chiara&rft.date=2019-01-01&rft.volume=235&rft.spage=350&rft.epage=362&rft.pages=350-362&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.07.099&rft_dat=%3Cproquest_cross%3E2130773117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130773117&rft_id=info:pmid/&rft_els_id=S0016236118312985&rfr_iscdi=true |