The distillation curve and sooting propensity of a typical jet fuel

•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-01, Vol.235, p.350-362
Hauptverfasser: Saggese, Chiara, Singh, Ajay V., Xue, Xin, Chu, Carson, Kholghy, Mohammad Reza, Zhang, Tongfeng, Camacho, Joaquin, Giaccai, Jennifer, Miller, J. Houston, Thomson, Murray J., Sung, Chih-Jen, Wang, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue
container_start_page 350
container_title Fuel (Guildford)
container_volume 235
creator Saggese, Chiara
Singh, Ajay V.
Xue, Xin
Chu, Carson
Kholghy, Mohammad Reza
Zhang, Tongfeng
Camacho, Joaquin
Giaccai, Jennifer
Miller, J. Houston
Thomson, Murray J.
Sung, Chih-Jen
Wang, Hai
description •Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations. Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.
doi_str_mv 10.1016/j.fuel.2018.07.099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130773117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118312985</els_id><sourcerecordid>2130773117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB160vzaRpwY0MfsGAm3EdYvKiKbWpSSrMv7dlXLt6m3PfPVxCrhmUDFh925Vuwr6sgDUlyBLa9oSsWCN5IZngp2QFM1VUvGbn5CKlDgBkIzYrst1_IrU-Zd_3OvswUDPFH6R6sDSFkP3wQccYRhySzwcaHNU0H0ZvdE87zHSpvSRnTvcJr_7umrw9Puy3z8Xu9elle78rDK9FLlqQ3CAYY2QtuXCsFaaSdSsF1K0WDje60taCe5dorXUcZN1UZmOMQOAO-ZrcHP_OQt8Tpqy6MMVhrlQVm2nJGZMzVR0pE0NKEZ0ao__S8aAYqGUs1anFWi1jKZBqHmsO3R1DOPv_eIwqGY-DQesjmqxs8P_FfwFqX3Mi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130773117</pqid></control><display><type>article</type><title>The distillation curve and sooting propensity of a typical jet fuel</title><source>Elsevier ScienceDirect Journals</source><creator>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</creator><creatorcontrib>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</creatorcontrib><description>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations. Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.07.099</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aromatic compounds ; Counterflow ; Cyclic compounds ; Diffusion flames ; Distillates ; Distillation ; Distillation curve ; Distribution functions ; Flame ; Fuels ; Jet engine fuels ; Jet fuel ; Molecular weight ; Nucleation ; Particle size ; Particle size distribution ; Size distribution ; Soot</subject><ispartof>Fuel (Guildford), 2019-01, Vol.235, p.350-362</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</citedby><cites>FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</cites><orcidid>0000-0002-0554-1143 ; 0000-0002-4043-1054 ; 0000-0002-7959-7238 ; 0000-0002-7644-4308 ; 0000-0002-5481-0442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.07.099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Saggese, Chiara</creatorcontrib><creatorcontrib>Singh, Ajay V.</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Chu, Carson</creatorcontrib><creatorcontrib>Kholghy, Mohammad Reza</creatorcontrib><creatorcontrib>Zhang, Tongfeng</creatorcontrib><creatorcontrib>Camacho, Joaquin</creatorcontrib><creatorcontrib>Giaccai, Jennifer</creatorcontrib><creatorcontrib>Miller, J. Houston</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><title>The distillation curve and sooting propensity of a typical jet fuel</title><title>Fuel (Guildford)</title><description>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations. Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</description><subject>Aromatic compounds</subject><subject>Counterflow</subject><subject>Cyclic compounds</subject><subject>Diffusion flames</subject><subject>Distillates</subject><subject>Distillation</subject><subject>Distillation curve</subject><subject>Distribution functions</subject><subject>Flame</subject><subject>Fuels</subject><subject>Jet engine fuels</subject><subject>Jet fuel</subject><subject>Molecular weight</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Size distribution</subject><subject>Soot</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB160vzaRpwY0MfsGAm3EdYvKiKbWpSSrMv7dlXLt6m3PfPVxCrhmUDFh925Vuwr6sgDUlyBLa9oSsWCN5IZngp2QFM1VUvGbn5CKlDgBkIzYrst1_IrU-Zd_3OvswUDPFH6R6sDSFkP3wQccYRhySzwcaHNU0H0ZvdE87zHSpvSRnTvcJr_7umrw9Puy3z8Xu9elle78rDK9FLlqQ3CAYY2QtuXCsFaaSdSsF1K0WDje60taCe5dorXUcZN1UZmOMQOAO-ZrcHP_OQt8Tpqy6MMVhrlQVm2nJGZMzVR0pE0NKEZ0ao__S8aAYqGUs1anFWi1jKZBqHmsO3R1DOPv_eIwqGY-DQesjmqxs8P_FfwFqX3Mi</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Saggese, Chiara</creator><creator>Singh, Ajay V.</creator><creator>Xue, Xin</creator><creator>Chu, Carson</creator><creator>Kholghy, Mohammad Reza</creator><creator>Zhang, Tongfeng</creator><creator>Camacho, Joaquin</creator><creator>Giaccai, Jennifer</creator><creator>Miller, J. Houston</creator><creator>Thomson, Murray J.</creator><creator>Sung, Chih-Jen</creator><creator>Wang, Hai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid><orcidid>https://orcid.org/0000-0002-4043-1054</orcidid><orcidid>https://orcid.org/0000-0002-7959-7238</orcidid><orcidid>https://orcid.org/0000-0002-7644-4308</orcidid><orcidid>https://orcid.org/0000-0002-5481-0442</orcidid></search><sort><creationdate>20190101</creationdate><title>The distillation curve and sooting propensity of a typical jet fuel</title><author>Saggese, Chiara ; Singh, Ajay V. ; Xue, Xin ; Chu, Carson ; Kholghy, Mohammad Reza ; Zhang, Tongfeng ; Camacho, Joaquin ; Giaccai, Jennifer ; Miller, J. Houston ; Thomson, Murray J. ; Sung, Chih-Jen ; Wang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9073ce0ccc76735f195c276975069a5fe4a2add0fb7edddf307682c4cc5e03fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Counterflow</topic><topic>Cyclic compounds</topic><topic>Diffusion flames</topic><topic>Distillates</topic><topic>Distillation</topic><topic>Distillation curve</topic><topic>Distribution functions</topic><topic>Flame</topic><topic>Fuels</topic><topic>Jet engine fuels</topic><topic>Jet fuel</topic><topic>Molecular weight</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Size distribution</topic><topic>Soot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saggese, Chiara</creatorcontrib><creatorcontrib>Singh, Ajay V.</creatorcontrib><creatorcontrib>Xue, Xin</creatorcontrib><creatorcontrib>Chu, Carson</creatorcontrib><creatorcontrib>Kholghy, Mohammad Reza</creatorcontrib><creatorcontrib>Zhang, Tongfeng</creatorcontrib><creatorcontrib>Camacho, Joaquin</creatorcontrib><creatorcontrib>Giaccai, Jennifer</creatorcontrib><creatorcontrib>Miller, J. Houston</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saggese, Chiara</au><au>Singh, Ajay V.</au><au>Xue, Xin</au><au>Chu, Carson</au><au>Kholghy, Mohammad Reza</au><au>Zhang, Tongfeng</au><au>Camacho, Joaquin</au><au>Giaccai, Jennifer</au><au>Miller, J. Houston</au><au>Thomson, Murray J.</au><au>Sung, Chih-Jen</au><au>Wang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distillation curve and sooting propensity of a typical jet fuel</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>235</volume><spage>350</spage><epage>362</epage><pages>350-362</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Flames of Jet A were examined with an emphasis on the effect of distillate fractions on soot formation.•A key surrogate of kerosene produces far less soot nuclei in premixed flames.•The high-boiling point end of the distillation curve nucleates far more soot particles.•Sooting properties in diffusion flames are less sensitive to fuel composition variations. Real jet fuels are complex mixtures of many organic components, some of which are aromatic compounds. Towards the high-temperature end of the distillation curve, some of the fuel components are multi-ring compounds. A small amount of these high molecular weight species in the fuel could impact soot nucleation in practical engines especially when the fuel is injected as a spray. This work aims to highlight the variation of the sooting propensity of jet fuels as a function of distillate fractions and to examine the validity of a surrogate fuel in emulating soot production from real fuels. Particle size distribution functions and soot volume fractions are studied in a series of laminar premixed stretch-stabilized ethylene flames doped with Jet A, its various distillate fractions, and the 2nd generation MURI surrogate. Soot formation as a result of doping real jet fuel and its distillate fractions is also investigated in counterflow and coflow diffusion flames. The results show that the higher-boiling distillates mostly influence soot nucleation and produce substantially more soot in nucleation controlled flames than the light molecular fraction and jet fuel as received, while such an effect is seen to be small in flames where soot production is controlled by surface growth. The potential impact of distillate fractions on soot nucleation propensities is discussed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.07.099</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0554-1143</orcidid><orcidid>https://orcid.org/0000-0002-4043-1054</orcidid><orcidid>https://orcid.org/0000-0002-7959-7238</orcidid><orcidid>https://orcid.org/0000-0002-7644-4308</orcidid><orcidid>https://orcid.org/0000-0002-5481-0442</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-01, Vol.235, p.350-362
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2130773117
source Elsevier ScienceDirect Journals
subjects Aromatic compounds
Counterflow
Cyclic compounds
Diffusion flames
Distillates
Distillation
Distillation curve
Distribution functions
Flame
Fuels
Jet engine fuels
Jet fuel
Molecular weight
Nucleation
Particle size
Particle size distribution
Size distribution
Soot
title The distillation curve and sooting propensity of a typical jet fuel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distillation%20curve%20and%20sooting%20propensity%20of%20a%20typical%20jet%20fuel&rft.jtitle=Fuel%20(Guildford)&rft.au=Saggese,%20Chiara&rft.date=2019-01-01&rft.volume=235&rft.spage=350&rft.epage=362&rft.pages=350-362&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.07.099&rft_dat=%3Cproquest_cross%3E2130773117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130773117&rft_id=info:pmid/&rft_els_id=S0016236118312985&rfr_iscdi=true