FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE
We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilitie...
Gespeichert in:
Veröffentlicht in: | Probability in the engineering and informational sciences 2006-07, Vol.20 (3), p.497-515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 3 |
container_start_page | 497 |
container_title | Probability in the engineering and informational sciences |
container_volume | 20 |
creator | Buczkowski, Peter S. Kulkarni, Vidyadhar G. |
description | We consider funding an interest-bearing warranty reserve with
contributions after each sale. The problem for the manufacturer is to
determine the initial level of the reserve fund and the amount to be put
in after each sale, so as to ensure that the reserve fund covers all of
the warranty liabilities with a prespecified probability over a fixed
period of time. We assume a nonhomogeneous Poisson sales process, random
warranty periods, and a constant failure rate for items under warranty. We
derive the mean and variance of the reserve level as a function of time
and provide a robust heuristic to aid the manufacturer in its
decision. |
doi_str_mv | 10.1017/S026996480606030X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213037809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S026996480606030X</cupid><sourcerecordid>1456970301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ3AN27Phx4OCGpIlUpSJJKZwsN3VQy6PFbiX496RqBQeE9rCH-WZnNQBcYnSNEeY3FQqZlIwKxLoh6PEI9DBlMhAywsegt5ODnX4KzrxfIoS4oKIHbtNJcZcXQ6jgVJWlKuonWCZVUj4kcJrXGYzHRV3mg0mdj4sKqrROSpioOIOVGiXn4KQ1r95eHHYfTNKkjrNgNB7msRoFDYnoJmjEDEvCach4iC2VQgjUhogwY6zhtm0kkxFnVhhJcCSw5Zzids5mrJlHjISkD672d9du9bG1fqOXq6177yJ1iAkiXCDZQXgPNW7lvbOtXrvFm3FfGiO9K0n_KanzBHvPwm_s54_BuBfNOOGRZsN7PRXZIC2zVNOOJ4cM8zZzi_mz_f3k_5RvBvpweg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213037809</pqid></control><display><type>article</type><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><source>Cambridge University Press Journals Complete</source><creator>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</creator><creatorcontrib>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</creatorcontrib><description>We consider funding an interest-bearing warranty reserve with
contributions after each sale. The problem for the manufacturer is to
determine the initial level of the reserve fund and the amount to be put
in after each sale, so as to ensure that the reserve fund covers all of
the warranty liabilities with a prespecified probability over a fixed
period of time. We assume a nonhomogeneous Poisson sales process, random
warranty periods, and a constant failure rate for items under warranty. We
derive the mean and variance of the reserve level as a function of time
and provide a robust heuristic to aid the manufacturer in its
decision.</description><identifier>ISSN: 0269-9648</identifier><identifier>EISSN: 1469-8951</identifier><identifier>DOI: 10.1017/S026996480606030X</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Differential equations ; Insurance premiums ; Manufacturers ; Product life cycle ; Random variables ; Renewals ; Replacement costs ; Sales ; Theory ; Warranties</subject><ispartof>Probability in the engineering and informational sciences, 2006-07, Vol.20 (3), p.497-515</ispartof><rights>2006 Cambridge University Press</rights><rights>Copyright Cambridge University Press Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</citedby><cites>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S026996480606030X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Buczkowski, Peter S.</creatorcontrib><creatorcontrib>Kulkarni, Vidyadhar G.</creatorcontrib><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><title>Probability in the engineering and informational sciences</title><addtitle>Prob. Eng. Inf. Sci</addtitle><description>We consider funding an interest-bearing warranty reserve with
contributions after each sale. The problem for the manufacturer is to
determine the initial level of the reserve fund and the amount to be put
in after each sale, so as to ensure that the reserve fund covers all of
the warranty liabilities with a prespecified probability over a fixed
period of time. We assume a nonhomogeneous Poisson sales process, random
warranty periods, and a constant failure rate for items under warranty. We
derive the mean and variance of the reserve level as a function of time
and provide a robust heuristic to aid the manufacturer in its
decision.</description><subject>Differential equations</subject><subject>Insurance premiums</subject><subject>Manufacturers</subject><subject>Product life cycle</subject><subject>Random variables</subject><subject>Renewals</subject><subject>Replacement costs</subject><subject>Sales</subject><subject>Theory</subject><subject>Warranties</subject><issn>0269-9648</issn><issn>1469-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ3AN27Phx4OCGpIlUpSJJKZwsN3VQy6PFbiX496RqBQeE9rCH-WZnNQBcYnSNEeY3FQqZlIwKxLoh6PEI9DBlMhAywsegt5ODnX4KzrxfIoS4oKIHbtNJcZcXQ6jgVJWlKuonWCZVUj4kcJrXGYzHRV3mg0mdj4sKqrROSpioOIOVGiXn4KQ1r95eHHYfTNKkjrNgNB7msRoFDYnoJmjEDEvCach4iC2VQgjUhogwY6zhtm0kkxFnVhhJcCSw5Zzids5mrJlHjISkD672d9du9bG1fqOXq6177yJ1iAkiXCDZQXgPNW7lvbOtXrvFm3FfGiO9K0n_KanzBHvPwm_s54_BuBfNOOGRZsN7PRXZIC2zVNOOJ4cM8zZzi_mz_f3k_5RvBvpweg</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Buczkowski, Peter S.</creator><creator>Kulkarni, Vidyadhar G.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060701</creationdate><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><author>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Differential equations</topic><topic>Insurance premiums</topic><topic>Manufacturers</topic><topic>Product life cycle</topic><topic>Random variables</topic><topic>Renewals</topic><topic>Replacement costs</topic><topic>Sales</topic><topic>Theory</topic><topic>Warranties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buczkowski, Peter S.</creatorcontrib><creatorcontrib>Kulkarni, Vidyadhar G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability in the engineering and informational sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buczkowski, Peter S.</au><au>Kulkarni, Vidyadhar G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</atitle><jtitle>Probability in the engineering and informational sciences</jtitle><addtitle>Prob. Eng. Inf. Sci</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>20</volume><issue>3</issue><spage>497</spage><epage>515</epage><pages>497-515</pages><issn>0269-9648</issn><eissn>1469-8951</eissn><abstract>We consider funding an interest-bearing warranty reserve with
contributions after each sale. The problem for the manufacturer is to
determine the initial level of the reserve fund and the amount to be put
in after each sale, so as to ensure that the reserve fund covers all of
the warranty liabilities with a prespecified probability over a fixed
period of time. We assume a nonhomogeneous Poisson sales process, random
warranty periods, and a constant failure rate for items under warranty. We
derive the mean and variance of the reserve level as a function of time
and provide a robust heuristic to aid the manufacturer in its
decision.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S026996480606030X</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-9648 |
ispartof | Probability in the engineering and informational sciences, 2006-07, Vol.20 (3), p.497-515 |
issn | 0269-9648 1469-8951 |
language | eng |
recordid | cdi_proquest_journals_213037809 |
source | Cambridge University Press Journals Complete |
subjects | Differential equations Insurance premiums Manufacturers Product life cycle Random variables Renewals Replacement costs Sales Theory Warranties |
title | FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUNDING%20A%20WARRANTY%20RESERVE%20WITH%20CONTRIBUTIONS%20AFTER%20EACH%20SALE&rft.jtitle=Probability%20in%20the%20engineering%20and%20informational%20sciences&rft.au=Buczkowski,%20Peter%20S.&rft.date=2006-07-01&rft.volume=20&rft.issue=3&rft.spage=497&rft.epage=515&rft.pages=497-515&rft.issn=0269-9648&rft.eissn=1469-8951&rft_id=info:doi/10.1017/S026996480606030X&rft_dat=%3Cproquest_cross%3E1456970301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213037809&rft_id=info:pmid/&rft_cupid=10_1017_S026996480606030X&rfr_iscdi=true |