FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE

We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability in the engineering and informational sciences 2006-07, Vol.20 (3), p.497-515
Hauptverfasser: Buczkowski, Peter S., Kulkarni, Vidyadhar G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 3
container_start_page 497
container_title Probability in the engineering and informational sciences
container_volume 20
creator Buczkowski, Peter S.
Kulkarni, Vidyadhar G.
description We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilities with a prespecified probability over a fixed period of time. We assume a nonhomogeneous Poisson sales process, random warranty periods, and a constant failure rate for items under warranty. We derive the mean and variance of the reserve level as a function of time and provide a robust heuristic to aid the manufacturer in its decision.
doi_str_mv 10.1017/S026996480606030X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213037809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S026996480606030X</cupid><sourcerecordid>1456970301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ3AN27Phx4OCGpIlUpSJJKZwsN3VQy6PFbiX496RqBQeE9rCH-WZnNQBcYnSNEeY3FQqZlIwKxLoh6PEI9DBlMhAywsegt5ODnX4KzrxfIoS4oKIHbtNJcZcXQ6jgVJWlKuonWCZVUj4kcJrXGYzHRV3mg0mdj4sKqrROSpioOIOVGiXn4KQ1r95eHHYfTNKkjrNgNB7msRoFDYnoJmjEDEvCach4iC2VQgjUhogwY6zhtm0kkxFnVhhJcCSw5Zzids5mrJlHjISkD672d9du9bG1fqOXq6177yJ1iAkiXCDZQXgPNW7lvbOtXrvFm3FfGiO9K0n_KanzBHvPwm_s54_BuBfNOOGRZsN7PRXZIC2zVNOOJ4cM8zZzi_mz_f3k_5RvBvpweg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213037809</pqid></control><display><type>article</type><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><source>Cambridge University Press Journals Complete</source><creator>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</creator><creatorcontrib>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</creatorcontrib><description>We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilities with a prespecified probability over a fixed period of time. We assume a nonhomogeneous Poisson sales process, random warranty periods, and a constant failure rate for items under warranty. We derive the mean and variance of the reserve level as a function of time and provide a robust heuristic to aid the manufacturer in its decision.</description><identifier>ISSN: 0269-9648</identifier><identifier>EISSN: 1469-8951</identifier><identifier>DOI: 10.1017/S026996480606030X</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Differential equations ; Insurance premiums ; Manufacturers ; Product life cycle ; Random variables ; Renewals ; Replacement costs ; Sales ; Theory ; Warranties</subject><ispartof>Probability in the engineering and informational sciences, 2006-07, Vol.20 (3), p.497-515</ispartof><rights>2006 Cambridge University Press</rights><rights>Copyright Cambridge University Press Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</citedby><cites>FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S026996480606030X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Buczkowski, Peter S.</creatorcontrib><creatorcontrib>Kulkarni, Vidyadhar G.</creatorcontrib><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><title>Probability in the engineering and informational sciences</title><addtitle>Prob. Eng. Inf. Sci</addtitle><description>We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilities with a prespecified probability over a fixed period of time. We assume a nonhomogeneous Poisson sales process, random warranty periods, and a constant failure rate for items under warranty. We derive the mean and variance of the reserve level as a function of time and provide a robust heuristic to aid the manufacturer in its decision.</description><subject>Differential equations</subject><subject>Insurance premiums</subject><subject>Manufacturers</subject><subject>Product life cycle</subject><subject>Random variables</subject><subject>Renewals</subject><subject>Replacement costs</subject><subject>Sales</subject><subject>Theory</subject><subject>Warranties</subject><issn>0269-9648</issn><issn>1469-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ3AN27Phx4OCGpIlUpSJJKZwsN3VQy6PFbiX496RqBQeE9rCH-WZnNQBcYnSNEeY3FQqZlIwKxLoh6PEI9DBlMhAywsegt5ODnX4KzrxfIoS4oKIHbtNJcZcXQ6jgVJWlKuonWCZVUj4kcJrXGYzHRV3mg0mdj4sKqrROSpioOIOVGiXn4KQ1r95eHHYfTNKkjrNgNB7msRoFDYnoJmjEDEvCach4iC2VQgjUhogwY6zhtm0kkxFnVhhJcCSw5Zzids5mrJlHjISkD672d9du9bG1fqOXq6177yJ1iAkiXCDZQXgPNW7lvbOtXrvFm3FfGiO9K0n_KanzBHvPwm_s54_BuBfNOOGRZsN7PRXZIC2zVNOOJ4cM8zZzi_mz_f3k_5RvBvpweg</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Buczkowski, Peter S.</creator><creator>Kulkarni, Vidyadhar G.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060701</creationdate><title>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</title><author>Buczkowski, Peter S. ; Kulkarni, Vidyadhar G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c8b1937426721e498880f2036aaea7efc969576e8a931581e7741fd6b6cd56323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Differential equations</topic><topic>Insurance premiums</topic><topic>Manufacturers</topic><topic>Product life cycle</topic><topic>Random variables</topic><topic>Renewals</topic><topic>Replacement costs</topic><topic>Sales</topic><topic>Theory</topic><topic>Warranties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buczkowski, Peter S.</creatorcontrib><creatorcontrib>Kulkarni, Vidyadhar G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability in the engineering and informational sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buczkowski, Peter S.</au><au>Kulkarni, Vidyadhar G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE</atitle><jtitle>Probability in the engineering and informational sciences</jtitle><addtitle>Prob. Eng. Inf. Sci</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>20</volume><issue>3</issue><spage>497</spage><epage>515</epage><pages>497-515</pages><issn>0269-9648</issn><eissn>1469-8951</eissn><abstract>We consider funding an interest-bearing warranty reserve with contributions after each sale. The problem for the manufacturer is to determine the initial level of the reserve fund and the amount to be put in after each sale, so as to ensure that the reserve fund covers all of the warranty liabilities with a prespecified probability over a fixed period of time. We assume a nonhomogeneous Poisson sales process, random warranty periods, and a constant failure rate for items under warranty. We derive the mean and variance of the reserve level as a function of time and provide a robust heuristic to aid the manufacturer in its decision.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S026996480606030X</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-9648
ispartof Probability in the engineering and informational sciences, 2006-07, Vol.20 (3), p.497-515
issn 0269-9648
1469-8951
language eng
recordid cdi_proquest_journals_213037809
source Cambridge University Press Journals Complete
subjects Differential equations
Insurance premiums
Manufacturers
Product life cycle
Random variables
Renewals
Replacement costs
Sales
Theory
Warranties
title FUNDING A WARRANTY RESERVE WITH CONTRIBUTIONS AFTER EACH SALE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUNDING%20A%20WARRANTY%20RESERVE%20WITH%20CONTRIBUTIONS%20AFTER%20EACH%20SALE&rft.jtitle=Probability%20in%20the%20engineering%20and%20informational%20sciences&rft.au=Buczkowski,%20Peter%20S.&rft.date=2006-07-01&rft.volume=20&rft.issue=3&rft.spage=497&rft.epage=515&rft.pages=497-515&rft.issn=0269-9648&rft.eissn=1469-8951&rft_id=info:doi/10.1017/S026996480606030X&rft_dat=%3Cproquest_cross%3E1456970301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213037809&rft_id=info:pmid/&rft_cupid=10_1017_S026996480606030X&rfr_iscdi=true