TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites

This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302
Hauptverfasser: Fu, Zhezhen, Koc, Rasit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 302
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 735
creator Fu, Zhezhen
Koc, Rasit
description This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2130283854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130283854</sourcerecordid><originalsourceid>FETCH-proquest_journals_21302838543</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcoyB7_cKH1wOho6bKkaNXKtaJ2q4nRa3M18O9r0Qe0OnDOmQjPj3dahoneToWnksCXkUr0XCyYn0opP1SRJ_LMXMwJU5fS3sLD3B8S295RN0JpLY0MJUNLb7TQYP9VpobKtFd0DDdykJlDzkMFQS4zk0JVMl6hpqYjNj3ySsxupWVc_7gUm9MxS8-yc_QakPviSYNrv6kIfK2CWMdRqP-7Pvf9RIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130283854</pqid></control><display><type>article</type><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fu, Zhezhen ; Koc, Rasit</creator><creatorcontrib>Fu, Zhezhen ; Koc, Rasit</creatorcontrib><description>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Alloys ; Ceramic powders ; Composite materials ; Entropy ; Fracture toughness ; Grain size ; Hardness ; High entropy alloys ; Mechanical properties ; Microstructure ; Sintering ; Sintering (powder metallurgy) ; Titanium carbide ; Titanium diboride</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302</ispartof><rights>Copyright Elsevier BV Sep 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Fu, Zhezhen</creatorcontrib><creatorcontrib>Koc, Rasit</creatorcontrib><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</description><subject>Alloys</subject><subject>Ceramic powders</subject><subject>Composite materials</subject><subject>Entropy</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Titanium carbide</subject><subject>Titanium diboride</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQIcoyB7_cKH1wOho6bKkaNXKtaJ2q4nRa3M18O9r0Qe0OnDOmQjPj3dahoneToWnksCXkUr0XCyYn0opP1SRJ_LMXMwJU5fS3sLD3B8S295RN0JpLY0MJUNLb7TQYP9VpobKtFd0DDdykJlDzkMFQS4zk0JVMl6hpqYjNj3ySsxupWVc_7gUm9MxS8-yc_QakPviSYNrv6kIfK2CWMdRqP-7Pvf9RIo</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Fu, Zhezhen</creator><creator>Koc, Rasit</creator><general>Elsevier BV</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180926</creationdate><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><author>Fu, Zhezhen ; Koc, Rasit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21302838543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Ceramic powders</topic><topic>Composite materials</topic><topic>Entropy</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Titanium carbide</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhezhen</creatorcontrib><creatorcontrib>Koc, Rasit</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Zhezhen</au><au>Koc, Rasit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>735</volume><spage>302</spage><pages>302-</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2130283854
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Ceramic powders
Composite materials
Entropy
Fracture toughness
Grain size
Hardness
High entropy alloys
Mechanical properties
Microstructure
Sintering
Sintering (powder metallurgy)
Titanium carbide
Titanium diboride
title TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiNiFeCrCoAl%20high-entropy%20alloys%20as%20novel%20metallic%20binders%20for%20TiB%5Esub%202%5E-TiC%20based%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Fu,%20Zhezhen&rft.date=2018-09-26&rft.volume=735&rft.spage=302&rft.pages=302-&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/&rft_dat=%3Cproquest%3E2130283854%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130283854&rft_id=info:pmid/&rfr_iscdi=true