TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites
This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 9...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 302 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 735 |
creator | Fu, Zhezhen Koc, Rasit |
description | This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2130283854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130283854</sourcerecordid><originalsourceid>FETCH-proquest_journals_21302838543</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcoyB7_cKH1wOho6bKkaNXKtaJ2q4nRa3M18O9r0Qe0OnDOmQjPj3dahoneToWnksCXkUr0XCyYn0opP1SRJ_LMXMwJU5fS3sLD3B8S295RN0JpLY0MJUNLb7TQYP9VpobKtFd0DDdykJlDzkMFQS4zk0JVMl6hpqYjNj3ySsxupWVc_7gUm9MxS8-yc_QakPviSYNrv6kIfK2CWMdRqP-7Pvf9RIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130283854</pqid></control><display><type>article</type><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fu, Zhezhen ; Koc, Rasit</creator><creatorcontrib>Fu, Zhezhen ; Koc, Rasit</creatorcontrib><description>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Alloys ; Ceramic powders ; Composite materials ; Entropy ; Fracture toughness ; Grain size ; Hardness ; High entropy alloys ; Mechanical properties ; Microstructure ; Sintering ; Sintering (powder metallurgy) ; Titanium carbide ; Titanium diboride</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302</ispartof><rights>Copyright Elsevier BV Sep 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Fu, Zhezhen</creatorcontrib><creatorcontrib>Koc, Rasit</creatorcontrib><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</description><subject>Alloys</subject><subject>Ceramic powders</subject><subject>Composite materials</subject><subject>Entropy</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Titanium carbide</subject><subject>Titanium diboride</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQIcoyB7_cKH1wOho6bKkaNXKtaJ2q4nRa3M18O9r0Qe0OnDOmQjPj3dahoneToWnksCXkUr0XCyYn0opP1SRJ_LMXMwJU5fS3sLD3B8S295RN0JpLY0MJUNLb7TQYP9VpobKtFd0DDdykJlDzkMFQS4zk0JVMl6hpqYjNj3ySsxupWVc_7gUm9MxS8-yc_QakPviSYNrv6kIfK2CWMdRqP-7Pvf9RIo</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Fu, Zhezhen</creator><creator>Koc, Rasit</creator><general>Elsevier BV</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180926</creationdate><title>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</title><author>Fu, Zhezhen ; Koc, Rasit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21302838543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Ceramic powders</topic><topic>Composite materials</topic><topic>Entropy</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Titanium carbide</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhezhen</creatorcontrib><creatorcontrib>Koc, Rasit</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Zhezhen</au><au>Koc, Rasit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>735</volume><spage>302</spage><pages>302-</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This paper studies the utilization of TiNiFeCrCoAl high-entropy alloys (HEA) as the metallic binders (10 wt%) in various ceramic matrix (TiB2, 60 wt% TiB2–40 wt% TiC, TiC). Using laboratory synthesized ultra-fine ceramic powders, all samples can be pressureless densified to relative densities over 97% at temperatures of 1550 °C (for TiB2 and TiC) and 1600 °C (for TiB2-TiC). The sintered samples have significantly enhanced properties including fine grain size (~ 0.8–1.5 µm), high hardness (~ 18.6–21.6 GPa), and high fracture toughness (~ 8.7–11.1 MPam1/2). Comparing within these samples, the results indicate the TiB2-HEA sample has the best combination of fine microstructure and good mechanical properties (hardness ~ 21.6 ± 1.0 GPa, fracture toughness ~ 11.1 ± 0.6 MPa m1/2) while the TiC-HEA sample has relative large grain size and acceptable mechanical properties (hardness ~ 18.6 ± 1.1 GPa, fracture toughness ~ 8.7 ± 0.8 MPa m1/2). Hardening and toughening mechanisms are further discussed.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-09, Vol.735, p.302 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2130283854 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloys Ceramic powders Composite materials Entropy Fracture toughness Grain size Hardness High entropy alloys Mechanical properties Microstructure Sintering Sintering (powder metallurgy) Titanium carbide Titanium diboride |
title | TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB^sub 2^-TiC based composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiNiFeCrCoAl%20high-entropy%20alloys%20as%20novel%20metallic%20binders%20for%20TiB%5Esub%202%5E-TiC%20based%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Fu,%20Zhezhen&rft.date=2018-09-26&rft.volume=735&rft.spage=302&rft.pages=302-&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/&rft_dat=%3Cproquest%3E2130283854%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130283854&rft_id=info:pmid/&rfr_iscdi=true |