Coding of geodesics on some modular surfaces and applications to odd and even continued fractions

The connection between geodesics on the modular surface PSL(2,Z)∖H and regular continued fractions, established by Series, is extended to a connection between geodesics on Γ∖H and odd and grotesque continued fractions, where Γ≅Z3∗Z3 is the index two subgroup of PSL(2,Z) generated by the order three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae 2018-10, Vol.29 (5), p.1214-1234
Hauptverfasser: Boca, Florin P., Merriman, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1234
container_issue 5
container_start_page 1214
container_title Indagationes mathematicae
container_volume 29
creator Boca, Florin P.
Merriman, Claire
description The connection between geodesics on the modular surface PSL(2,Z)∖H and regular continued fractions, established by Series, is extended to a connection between geodesics on Γ∖H and odd and grotesque continued fractions, where Γ≅Z3∗Z3 is the index two subgroup of PSL(2,Z) generated by the order three elements 0−111 and 01−11, and having an ideal quadrilateral as fundamental domain.A similar connection between geodesics on Θ∖H and even continued fractions is discussed in our framework, where Θ denotes the Theta subgroup of PSL(2,Z) generated by 0−110 and 1201.
doi_str_mv 10.1016/j.indag.2018.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130280965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019357718301988</els_id><sourcerecordid>2130280965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1164fffcb800d45ab2a0c73cdbc7e098314cdae6a9caa8675c112807a3474663</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gZeA510n-5FsDx6k-AWCl97DdDJbUtqkJrsF_71r69nTMMPzzgyPEHcKSgVKP2xKHxyuywpUV0JbAjRnYqY6UxVaAZyLGYCaF3VrzKW4ynkztQYqPRO4iM6HtYy9XHN0nD1lGYPMccdyF924xSTzmHokzhKDk7jfbz3h4GPIcogyOnec84GDpBgGH0Z2sk9IR-ZGXPS4zXz7V6_F8uV5uXgrPj5f3xdPHwU1TTUUSumm73tadQCuaXFVIZCpya3IMMy7WjXkkDXOCbHTpiWlqg4M1o1ptK6vxf1p7T7Fr5HzYDdxTGG6aCtVw4TOdTtR9YmiFHNO3Nt98jtM31aB_VVpN_ao0v6qtNDaSeWUejylePr_4DnZTJ4DsfOJabAu-n_zP3sWfmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130280965</pqid></control><display><type>article</type><title>Coding of geodesics on some modular surfaces and applications to odd and even continued fractions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Boca, Florin P. ; Merriman, Claire</creator><creatorcontrib>Boca, Florin P. ; Merriman, Claire</creatorcontrib><description>The connection between geodesics on the modular surface PSL(2,Z)∖H and regular continued fractions, established by Series, is extended to a connection between geodesics on Γ∖H and odd and grotesque continued fractions, where Γ≅Z3∗Z3 is the index two subgroup of PSL(2,Z) generated by the order three elements 0−111 and 01−11, and having an ideal quadrilateral as fundamental domain.A similar connection between geodesics on Θ∖H and even continued fractions is discussed in our framework, where Θ denotes the Theta subgroup of PSL(2,Z) generated by 0−110 and 1201.</description><identifier>ISSN: 0019-3577</identifier><identifier>EISSN: 1872-6100</identifier><identifier>DOI: 10.1016/j.indag.2018.05.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coding theory ; Even continued fractions ; Fractions ; Geodesics coding ; Geodesy ; Modular surface ; Number theory ; Odd continued fractions ; Quadrilaterals ; Subgroups ; Theorems</subject><ispartof>Indagationes mathematicae, 2018-10, Vol.29 (5), p.1214-1234</ispartof><rights>2018 Royal Dutch Mathematical Society (KWG)</rights><rights>Copyright Elsevier Science Ltd. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1164fffcb800d45ab2a0c73cdbc7e098314cdae6a9caa8675c112807a3474663</citedby><cites>FETCH-LOGICAL-c442t-1164fffcb800d45ab2a0c73cdbc7e098314cdae6a9caa8675c112807a3474663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.indag.2018.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Boca, Florin P.</creatorcontrib><creatorcontrib>Merriman, Claire</creatorcontrib><title>Coding of geodesics on some modular surfaces and applications to odd and even continued fractions</title><title>Indagationes mathematicae</title><description>The connection between geodesics on the modular surface PSL(2,Z)∖H and regular continued fractions, established by Series, is extended to a connection between geodesics on Γ∖H and odd and grotesque continued fractions, where Γ≅Z3∗Z3 is the index two subgroup of PSL(2,Z) generated by the order three elements 0−111 and 01−11, and having an ideal quadrilateral as fundamental domain.A similar connection between geodesics on Θ∖H and even continued fractions is discussed in our framework, where Θ denotes the Theta subgroup of PSL(2,Z) generated by 0−110 and 1201.</description><subject>Coding theory</subject><subject>Even continued fractions</subject><subject>Fractions</subject><subject>Geodesics coding</subject><subject>Geodesy</subject><subject>Modular surface</subject><subject>Number theory</subject><subject>Odd continued fractions</subject><subject>Quadrilaterals</subject><subject>Subgroups</subject><subject>Theorems</subject><issn>0019-3577</issn><issn>1872-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gZeA510n-5FsDx6k-AWCl97DdDJbUtqkJrsF_71r69nTMMPzzgyPEHcKSgVKP2xKHxyuywpUV0JbAjRnYqY6UxVaAZyLGYCaF3VrzKW4ynkztQYqPRO4iM6HtYy9XHN0nD1lGYPMccdyF924xSTzmHokzhKDk7jfbz3h4GPIcogyOnec84GDpBgGH0Z2sk9IR-ZGXPS4zXz7V6_F8uV5uXgrPj5f3xdPHwU1TTUUSumm73tadQCuaXFVIZCpya3IMMy7WjXkkDXOCbHTpiWlqg4M1o1ptK6vxf1p7T7Fr5HzYDdxTGG6aCtVw4TOdTtR9YmiFHNO3Nt98jtM31aB_VVpN_ao0v6qtNDaSeWUejylePr_4DnZTJ4DsfOJabAu-n_zP3sWfmE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Boca, Florin P.</creator><creator>Merriman, Claire</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181001</creationdate><title>Coding of geodesics on some modular surfaces and applications to odd and even continued fractions</title><author>Boca, Florin P. ; Merriman, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1164fffcb800d45ab2a0c73cdbc7e098314cdae6a9caa8675c112807a3474663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coding theory</topic><topic>Even continued fractions</topic><topic>Fractions</topic><topic>Geodesics coding</topic><topic>Geodesy</topic><topic>Modular surface</topic><topic>Number theory</topic><topic>Odd continued fractions</topic><topic>Quadrilaterals</topic><topic>Subgroups</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boca, Florin P.</creatorcontrib><creatorcontrib>Merriman, Claire</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Indagationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boca, Florin P.</au><au>Merriman, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding of geodesics on some modular surfaces and applications to odd and even continued fractions</atitle><jtitle>Indagationes mathematicae</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>5</issue><spage>1214</spage><epage>1234</epage><pages>1214-1234</pages><issn>0019-3577</issn><eissn>1872-6100</eissn><abstract>The connection between geodesics on the modular surface PSL(2,Z)∖H and regular continued fractions, established by Series, is extended to a connection between geodesics on Γ∖H and odd and grotesque continued fractions, where Γ≅Z3∗Z3 is the index two subgroup of PSL(2,Z) generated by the order three elements 0−111 and 01−11, and having an ideal quadrilateral as fundamental domain.A similar connection between geodesics on Θ∖H and even continued fractions is discussed in our framework, where Θ denotes the Theta subgroup of PSL(2,Z) generated by 0−110 and 1201.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.indag.2018.05.004</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-3577
ispartof Indagationes mathematicae, 2018-10, Vol.29 (5), p.1214-1234
issn 0019-3577
1872-6100
language eng
recordid cdi_proquest_journals_2130280965
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Coding theory
Even continued fractions
Fractions
Geodesics coding
Geodesy
Modular surface
Number theory
Odd continued fractions
Quadrilaterals
Subgroups
Theorems
title Coding of geodesics on some modular surfaces and applications to odd and even continued fractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20of%20geodesics%20on%20some%20modular%20surfaces%20and%20applications%20to%20odd%20and%20even%20continued%20fractions&rft.jtitle=Indagationes%20mathematicae&rft.au=Boca,%20Florin%20P.&rft.date=2018-10-01&rft.volume=29&rft.issue=5&rft.spage=1214&rft.epage=1234&rft.pages=1214-1234&rft.issn=0019-3577&rft.eissn=1872-6100&rft_id=info:doi/10.1016/j.indag.2018.05.004&rft_dat=%3Cproquest_cross%3E2130280965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130280965&rft_id=info:pmid/&rft_els_id=S0019357718301988&rfr_iscdi=true