Temperature state of electrical insulation of a superconducting DC cable

•A mathematical model governing the temperature distribution in the electrical insulation layer is constructed.•A quantitative assay is carried out for the electrical insulation layer of a superconducting cable.•The results make it possible to evaluate the applicability of specific electrical insula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2018-10, Vol.95, p.1-4
Hauptverfasser: Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, I.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title Cryogenics (Guildford)
container_volume 95
creator Zarubin, V.S.
Kuvyrkin, G.N.
Savelyeva, I.Y.
description •A mathematical model governing the temperature distribution in the electrical insulation layer is constructed.•A quantitative assay is carried out for the electrical insulation layer of a superconducting cable.•The results make it possible to evaluate the applicability of specific electrical insulating materials. The purpose of the study was to build a nonlinear mathematical model governing the steady-state one-dimensional temperature distribution in the electrical insulation layer made in the form of a long hollow circular cylinder whose surfaces are given a constant electric field potential difference. By means of this model, integral ratios, which connecting the parameters of the temperature state of this layer, the heat transfer conditions on its surfaces and the temperature-dependent heat conduction coefficient and the electrical resistivity of the electrical insulating material with a given electrical potential difference, were built. A quantitative assay of the integral ratios is carried out with regard to the electrical insulation layer of a superconducting cable cooled by liquid nitrogen.
doi_str_mv 10.1016/j.cryogenics.2018.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130270987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011227518301474</els_id><sourcerecordid>2130270987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-721467169b75c89111c370a5ec6add0517db6acc7793d84f78bdf3a6d32d92eb3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-h4Dn1knSNu1R1z8rLHhZzyFNpktKt1mTVthvb5YVPAoDMzDvvWF-hFAGOQNWPfS5CUe_w9GZmHNgdQ6pQFyQBatlk3EuykuyAGAszbK8Jjcx9gBQ8IovyHqL-wMGPc0BaZz0hNR3FAc0U3BGD9SNcR705Px4Wmga5yQ3frSzmdy4o88ranQ74C256vQQ8e63L8nn68t2tc42H2_vq8dNZkRRTZnkrKgkq5pWlqZuGGNGSNAlmkpbCyWTtq20MVI2wtZFJ-vWdkJXVnDbcGzFktyfcw_Bf80YJ9X7OYzppOJMAJfQ1DKp6rPKBB9jwE4dgtvrcFQM1Imb6tUfN3XipiAViGR9OlsxffHtMKhoHI4GrQuJirLe_R_yA2c7e-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130270987</pqid></control><display><type>article</type><title>Temperature state of electrical insulation of a superconducting DC cable</title><source>Elsevier ScienceDirect Journals</source><creator>Zarubin, V.S. ; Kuvyrkin, G.N. ; Savelyeva, I.Y.</creator><creatorcontrib>Zarubin, V.S. ; Kuvyrkin, G.N. ; Savelyeva, I.Y.</creatorcontrib><description>•A mathematical model governing the temperature distribution in the electrical insulation layer is constructed.•A quantitative assay is carried out for the electrical insulation layer of a superconducting cable.•The results make it possible to evaluate the applicability of specific electrical insulating materials. The purpose of the study was to build a nonlinear mathematical model governing the steady-state one-dimensional temperature distribution in the electrical insulation layer made in the form of a long hollow circular cylinder whose surfaces are given a constant electric field potential difference. By means of this model, integral ratios, which connecting the parameters of the temperature state of this layer, the heat transfer conditions on its surfaces and the temperature-dependent heat conduction coefficient and the electrical resistivity of the electrical insulating material with a given electrical potential difference, were built. A quantitative assay of the integral ratios is carried out with regard to the electrical insulation layer of a superconducting cable cooled by liquid nitrogen.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2018.08.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Circular cylinders ; Conduction heating ; Conductive heat transfer ; Cryogenic engineering ; Electric fields ; Electric potential ; Electrical insulation ; Electrical insulation of a superconducting cable ; Entropy ; Integrals ; Liquid nitrogen ; Low temperature physics ; Nonlinear mathematical model ; One-dimensional temperature distribution ; Superconductivity ; Temperature ; Temperature dependence ; Temperature distribution ; Thermodynamics</subject><ispartof>Cryogenics (Guildford), 2018-10, Vol.95, p.1-4</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-721467169b75c89111c370a5ec6add0517db6acc7793d84f78bdf3a6d32d92eb3</citedby><cites>FETCH-LOGICAL-c346t-721467169b75c89111c370a5ec6add0517db6acc7793d84f78bdf3a6d32d92eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011227518301474$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zarubin, V.S.</creatorcontrib><creatorcontrib>Kuvyrkin, G.N.</creatorcontrib><creatorcontrib>Savelyeva, I.Y.</creatorcontrib><title>Temperature state of electrical insulation of a superconducting DC cable</title><title>Cryogenics (Guildford)</title><description>•A mathematical model governing the temperature distribution in the electrical insulation layer is constructed.•A quantitative assay is carried out for the electrical insulation layer of a superconducting cable.•The results make it possible to evaluate the applicability of specific electrical insulating materials. The purpose of the study was to build a nonlinear mathematical model governing the steady-state one-dimensional temperature distribution in the electrical insulation layer made in the form of a long hollow circular cylinder whose surfaces are given a constant electric field potential difference. By means of this model, integral ratios, which connecting the parameters of the temperature state of this layer, the heat transfer conditions on its surfaces and the temperature-dependent heat conduction coefficient and the electrical resistivity of the electrical insulating material with a given electrical potential difference, were built. A quantitative assay of the integral ratios is carried out with regard to the electrical insulation layer of a superconducting cable cooled by liquid nitrogen.</description><subject>Circular cylinders</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Cryogenic engineering</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical insulation</subject><subject>Electrical insulation of a superconducting cable</subject><subject>Entropy</subject><subject>Integrals</subject><subject>Liquid nitrogen</subject><subject>Low temperature physics</subject><subject>Nonlinear mathematical model</subject><subject>One-dimensional temperature distribution</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature distribution</subject><subject>Thermodynamics</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-h4Dn1knSNu1R1z8rLHhZzyFNpktKt1mTVthvb5YVPAoDMzDvvWF-hFAGOQNWPfS5CUe_w9GZmHNgdQ6pQFyQBatlk3EuykuyAGAszbK8Jjcx9gBQ8IovyHqL-wMGPc0BaZz0hNR3FAc0U3BGD9SNcR705Px4Wmga5yQ3frSzmdy4o88ranQ74C256vQQ8e63L8nn68t2tc42H2_vq8dNZkRRTZnkrKgkq5pWlqZuGGNGSNAlmkpbCyWTtq20MVI2wtZFJ-vWdkJXVnDbcGzFktyfcw_Bf80YJ9X7OYzppOJMAJfQ1DKp6rPKBB9jwE4dgtvrcFQM1Imb6tUfN3XipiAViGR9OlsxffHtMKhoHI4GrQuJirLe_R_yA2c7e-Y</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Zarubin, V.S.</creator><creator>Kuvyrkin, G.N.</creator><creator>Savelyeva, I.Y.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201810</creationdate><title>Temperature state of electrical insulation of a superconducting DC cable</title><author>Zarubin, V.S. ; Kuvyrkin, G.N. ; Savelyeva, I.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-721467169b75c89111c370a5ec6add0517db6acc7793d84f78bdf3a6d32d92eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circular cylinders</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Cryogenic engineering</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical insulation</topic><topic>Electrical insulation of a superconducting cable</topic><topic>Entropy</topic><topic>Integrals</topic><topic>Liquid nitrogen</topic><topic>Low temperature physics</topic><topic>Nonlinear mathematical model</topic><topic>One-dimensional temperature distribution</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarubin, V.S.</creatorcontrib><creatorcontrib>Kuvyrkin, G.N.</creatorcontrib><creatorcontrib>Savelyeva, I.Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarubin, V.S.</au><au>Kuvyrkin, G.N.</au><au>Savelyeva, I.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature state of electrical insulation of a superconducting DC cable</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>95</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><abstract>•A mathematical model governing the temperature distribution in the electrical insulation layer is constructed.•A quantitative assay is carried out for the electrical insulation layer of a superconducting cable.•The results make it possible to evaluate the applicability of specific electrical insulating materials. The purpose of the study was to build a nonlinear mathematical model governing the steady-state one-dimensional temperature distribution in the electrical insulation layer made in the form of a long hollow circular cylinder whose surfaces are given a constant electric field potential difference. By means of this model, integral ratios, which connecting the parameters of the temperature state of this layer, the heat transfer conditions on its surfaces and the temperature-dependent heat conduction coefficient and the electrical resistivity of the electrical insulating material with a given electrical potential difference, were built. A quantitative assay of the integral ratios is carried out with regard to the electrical insulation layer of a superconducting cable cooled by liquid nitrogen.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2018.08.003</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2018-10, Vol.95, p.1-4
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_journals_2130270987
source Elsevier ScienceDirect Journals
subjects Circular cylinders
Conduction heating
Conductive heat transfer
Cryogenic engineering
Electric fields
Electric potential
Electrical insulation
Electrical insulation of a superconducting cable
Entropy
Integrals
Liquid nitrogen
Low temperature physics
Nonlinear mathematical model
One-dimensional temperature distribution
Superconductivity
Temperature
Temperature dependence
Temperature distribution
Thermodynamics
title Temperature state of electrical insulation of a superconducting DC cable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20state%20of%20electrical%20insulation%20of%20a%20superconducting%20DC%20cable&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Zarubin,%20V.S.&rft.date=2018-10&rft.volume=95&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0011-2275&rft.eissn=1879-2235&rft_id=info:doi/10.1016/j.cryogenics.2018.08.003&rft_dat=%3Cproquest_cross%3E2130270987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130270987&rft_id=info:pmid/&rft_els_id=S0011227518301474&rfr_iscdi=true