An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries

The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286
Hauptverfasser: Han, Lei, Wang, Ziqi, Kong, Defei, Yang, Luyi, Yang, Kai, Wang, Zijian, Pan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21286
container_issue 43
container_start_page 21280
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Han, Lei
Wang, Ziqi
Kong, Defei
Yang, Luyi
Yang, Kai
Wang, Zijian
Pan, Feng
description The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10 −4 S cm −1 at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g −1 , 127 mA h g −1 and 163 mA h g −1 after 100 cycles at room temperature with LiFePO 4 , LiCoO 2 , and LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.
doi_str_mv 10.1039/C8TA08875F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130096983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130096983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov_oKAN2F1stnsJsdSrAoFL_W8pEkWU3c3dZKl9N8bqehcZmA-3rx5hNwyeGDA1eNKbpcgZSPWF2RWgoCiqVR9-TdLeU0WMe4hlwSolZqRaTnSgNahs3RwMRwChinS6HtvNO1QD-4Y8JPudMyE651JGPpTcvTo0wcd9RiOLqW882Ny2GnjIu0C0hh6b4uYdEb7jPppyCKZRO_iDbnqdB_d4rfPyfv6abt6KTZvz6-r5aYwpZKpENmkaJjtKttUmlemrlgp1U5qZgGEEqXojGpkxRqthRHKguVaQv5U1mVT8Tm5O-seMHxNLqZ2HyYc88m2ZBxA1UryTN2fKYMhRnRde0A_aDy1DNqfZNv_ZPk3gFJsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130096983</pqid></control><display><type>article</type><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</creator><creatorcontrib>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</creatorcontrib><description>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10 −4 S cm −1 at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g −1 , 127 mA h g −1 and 163 mA h g −1 after 100 cycles at room temperature with LiFePO 4 , LiCoO 2 , and LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08875F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cycles ; Dendrites ; Electroactive materials ; Electrochemical analysis ; Electrochemical potential ; Electrochemistry ; Electrode materials ; Electrolytes ; Interface stability ; Interfaces ; Ion currents ; Ionic liquids ; Ions ; Lithium ; Lithium batteries ; Metals ; Silica ; Silicon dioxide ; Solid state ; Thermal stability ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</citedby><cites>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</cites><orcidid>0000-0002-8216-1339 ; 0000-0001-5420-0145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Kong, Defei</creatorcontrib><creatorcontrib>Yang, Luyi</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10 −4 S cm −1 at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g −1 , 127 mA h g −1 and 163 mA h g −1 after 100 cycles at room temperature with LiFePO 4 , LiCoO 2 , and LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cycles</subject><subject>Dendrites</subject><subject>Electroactive materials</subject><subject>Electrochemical analysis</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metals</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid state</subject><subject>Thermal stability</subject><subject>X ray photoelectron spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov_oKAN2F1stnsJsdSrAoFL_W8pEkWU3c3dZKl9N8bqehcZmA-3rx5hNwyeGDA1eNKbpcgZSPWF2RWgoCiqVR9-TdLeU0WMe4hlwSolZqRaTnSgNahs3RwMRwChinS6HtvNO1QD-4Y8JPudMyE651JGPpTcvTo0wcd9RiOLqW882Ny2GnjIu0C0hh6b4uYdEb7jPppyCKZRO_iDbnqdB_d4rfPyfv6abt6KTZvz6-r5aYwpZKpENmkaJjtKttUmlemrlgp1U5qZgGEEqXojGpkxRqthRHKguVaQv5U1mVT8Tm5O-seMHxNLqZ2HyYc88m2ZBxA1UryTN2fKYMhRnRde0A_aDy1DNqfZNv_ZPk3gFJsBg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Han, Lei</creator><creator>Wang, Ziqi</creator><creator>Kong, Defei</creator><creator>Yang, Luyi</creator><creator>Yang, Kai</creator><creator>Wang, Zijian</creator><creator>Pan, Feng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5420-0145</orcidid></search><sort><creationdate>2018</creationdate><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><author>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cycles</topic><topic>Dendrites</topic><topic>Electroactive materials</topic><topic>Electrochemical analysis</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metals</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid state</topic><topic>Thermal stability</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Kong, Defei</creatorcontrib><creatorcontrib>Yang, Luyi</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lei</au><au>Wang, Ziqi</au><au>Kong, Defei</au><au>Yang, Luyi</au><au>Yang, Kai</au><au>Wang, Zijian</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>43</issue><spage>21280</spage><epage>21286</epage><pages>21280-21286</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10 −4 S cm −1 at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g −1 , 127 mA h g −1 and 163 mA h g −1 after 100 cycles at room temperature with LiFePO 4 , LiCoO 2 , and LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08875F</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5420-0145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2130096983
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Cycles
Dendrites
Electroactive materials
Electrochemical analysis
Electrochemical potential
Electrochemistry
Electrode materials
Electrolytes
Interface stability
Interfaces
Ion currents
Ionic liquids
Ions
Lithium
Lithium batteries
Metals
Silica
Silicon dioxide
Solid state
Thermal stability
X ray photoelectron spectroscopy
title An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ordered%20mesoporous%20silica%20framework%20based%20electrolyte%20with%20nanowetted%20interfaces%20for%20solid-state%20lithium%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Han,%20Lei&rft.date=2018&rft.volume=6&rft.issue=43&rft.spage=21280&rft.epage=21286&rft.pages=21280-21286&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08875F&rft_dat=%3Cproquest_cross%3E2130096983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130096983&rft_id=info:pmid/&rfr_iscdi=true