An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries
The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregn...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21286 |
---|---|
container_issue | 43 |
container_start_page | 21280 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Han, Lei Wang, Ziqi Kong, Defei Yang, Luyi Yang, Kai Wang, Zijian Pan, Feng |
description | The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10
−4
S cm
−1
at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g
−1
, 127 mA h g
−1
and 163 mA h g
−1
after 100 cycles at room temperature with LiFePO
4
, LiCoO
2
, and LiNi
0.8
Co
0.1
Mn
0.1
O
2
cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries. |
doi_str_mv | 10.1039/C8TA08875F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2130096983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130096983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov_oKAN2F1stnsJsdSrAoFL_W8pEkWU3c3dZKl9N8bqehcZmA-3rx5hNwyeGDA1eNKbpcgZSPWF2RWgoCiqVR9-TdLeU0WMe4hlwSolZqRaTnSgNahs3RwMRwChinS6HtvNO1QD-4Y8JPudMyE651JGPpTcvTo0wcd9RiOLqW882Ny2GnjIu0C0hh6b4uYdEb7jPppyCKZRO_iDbnqdB_d4rfPyfv6abt6KTZvz6-r5aYwpZKpENmkaJjtKttUmlemrlgp1U5qZgGEEqXojGpkxRqthRHKguVaQv5U1mVT8Tm5O-seMHxNLqZ2HyYc88m2ZBxA1UryTN2fKYMhRnRde0A_aDy1DNqfZNv_ZPk3gFJsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130096983</pqid></control><display><type>article</type><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</creator><creatorcontrib>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</creatorcontrib><description>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10
−4
S cm
−1
at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g
−1
, 127 mA h g
−1
and 163 mA h g
−1
after 100 cycles at room temperature with LiFePO
4
, LiCoO
2
, and LiNi
0.8
Co
0.1
Mn
0.1
O
2
cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA08875F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cycles ; Dendrites ; Electroactive materials ; Electrochemical analysis ; Electrochemical potential ; Electrochemistry ; Electrode materials ; Electrolytes ; Interface stability ; Interfaces ; Ion currents ; Ionic liquids ; Ions ; Lithium ; Lithium batteries ; Metals ; Silica ; Silicon dioxide ; Solid state ; Thermal stability ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</citedby><cites>FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</cites><orcidid>0000-0002-8216-1339 ; 0000-0001-5420-0145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Kong, Defei</creatorcontrib><creatorcontrib>Yang, Luyi</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10
−4
S cm
−1
at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g
−1
, 127 mA h g
−1
and 163 mA h g
−1
after 100 cycles at room temperature with LiFePO
4
, LiCoO
2
, and LiNi
0.8
Co
0.1
Mn
0.1
O
2
cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cycles</subject><subject>Dendrites</subject><subject>Electroactive materials</subject><subject>Electrochemical analysis</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metals</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid state</subject><subject>Thermal stability</subject><subject>X ray photoelectron spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov_oKAN2F1stnsJsdSrAoFL_W8pEkWU3c3dZKl9N8bqehcZmA-3rx5hNwyeGDA1eNKbpcgZSPWF2RWgoCiqVR9-TdLeU0WMe4hlwSolZqRaTnSgNahs3RwMRwChinS6HtvNO1QD-4Y8JPudMyE651JGPpTcvTo0wcd9RiOLqW882Ny2GnjIu0C0hh6b4uYdEb7jPppyCKZRO_iDbnqdB_d4rfPyfv6abt6KTZvz6-r5aYwpZKpENmkaJjtKttUmlemrlgp1U5qZgGEEqXojGpkxRqthRHKguVaQv5U1mVT8Tm5O-seMHxNLqZ2HyYc88m2ZBxA1UryTN2fKYMhRnRde0A_aDy1DNqfZNv_ZPk3gFJsBg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Han, Lei</creator><creator>Wang, Ziqi</creator><creator>Kong, Defei</creator><creator>Yang, Luyi</creator><creator>Yang, Kai</creator><creator>Wang, Zijian</creator><creator>Pan, Feng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5420-0145</orcidid></search><sort><creationdate>2018</creationdate><title>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</title><author>Han, Lei ; Wang, Ziqi ; Kong, Defei ; Yang, Luyi ; Yang, Kai ; Wang, Zijian ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-5006571df4d74a34c641289b8a1d0059525fc978417aa5c59d0d3a80488862743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cycles</topic><topic>Dendrites</topic><topic>Electroactive materials</topic><topic>Electrochemical analysis</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metals</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid state</topic><topic>Thermal stability</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Kong, Defei</creatorcontrib><creatorcontrib>Yang, Luyi</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lei</au><au>Wang, Ziqi</au><au>Kong, Defei</au><au>Yang, Luyi</au><au>Yang, Kai</au><au>Wang, Zijian</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>43</issue><spage>21280</spage><epage>21286</epage><pages>21280-21286</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The practical applications of lithium metal as an anode material are hindered by the uncontrollable growth of lithium dendrites. Herein, an ordered mesoporous silica framework (MCM-41) based solid-state electrolyte (Li-IL@MCM-41 SSE) with nanoconfined ionic liquids is prepared through a post-impregnation method. The as-prepared electrolyte with nanowetted interfaces demonstrates suppression towards lithium dendrites, high thermal stability (up to 350 °C) and excellent electrochemical properties, such as high ionic conductivity (3.98 × 10
−4
S cm
−1
at 30 °C), a broad electrochemical potential window (up to 5.2 V) and good compatibility with different electroactive materials. The solid-state batteries (SSBs) assembled exhibited excellent cycling performance, delivering capacities of 138 mA h g
−1
, 127 mA h g
−1
and 163 mA h g
−1
after 100 cycles at room temperature with LiFePO
4
, LiCoO
2
, and LiNi
0.8
Co
0.1
Mn
0.1
O
2
cathode materials, respectively. The good battery performance can be ascribed to the effective three-dimensional ion-conducting networks established by the nanowetted interfaces. The aforementioned results exhibit the good prospects of the Li-IL@MCM-41 SSE for application in lithium metal batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA08875F</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid><orcidid>https://orcid.org/0000-0001-5420-0145</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (43), p.21280-21286 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2130096983 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Batteries Cycles Dendrites Electroactive materials Electrochemical analysis Electrochemical potential Electrochemistry Electrode materials Electrolytes Interface stability Interfaces Ion currents Ionic liquids Ions Lithium Lithium batteries Metals Silica Silicon dioxide Solid state Thermal stability X ray photoelectron spectroscopy |
title | An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ordered%20mesoporous%20silica%20framework%20based%20electrolyte%20with%20nanowetted%20interfaces%20for%20solid-state%20lithium%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Han,%20Lei&rft.date=2018&rft.volume=6&rft.issue=43&rft.spage=21280&rft.epage=21286&rft.pages=21280-21286&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA08875F&rft_dat=%3Cproquest_cross%3E2130096983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130096983&rft_id=info:pmid/&rfr_iscdi=true |