Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C
[Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to t...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2018-10, Vol.143, p.116-128 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | Corrosion science |
container_volume | 143 |
creator | Cai, Zhenyang Zhao, Xiaojun Zhang, Daxu Wu, Yonghuang Wen, Jianxi Tian, Gengyu Cao, Qinxuan Tang, Xinyang Xiao, Lairong Liu, Sainan |
description | [Display omitted]
•A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed.
To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2. |
doi_str_mv | 10.1016/j.corsci.2018.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129993762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18300489</els_id><sourcerecordid>2129993762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CLgeupNOp2ZbAQp_kHFhRV_NiFNbkrKdFKTqdidW9_GZ_BRfBJTxrVw4G6-cy7nEHLMYMCAFaeLgfYhajfgwKoBJEG5Q3qsKkUGuSh2SQ-AQSaG1dM-OYhxAQCJhR6Z3zodfGzDWrfrgFQ1hvp3Z1TrfEMDRhdb1Wik3lJFn-9f6NIbZx0aGl3ttDNItU90M6fWBzpV2SNVde03VLWUVQA_H5_fX-NDsmdVHfHo7_bJw-XFdHydTe6ubsbnk0zzXLRZrsWw5CPFAGGmK64xL8EaazUKKxBFlSuGs2JWcSZyocSoLNmIFwUTypjCDPvkpMtdBf-6xtjKhV-HJr2UnHEhUnzBE5V31LZ7DGjlKrilChvJQG4nlQvZTSq3k0pIgjLZzjobpgZvDoNMBKZ1jAuoW2m8-z_gF7KpgrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129993762</pqid></control><display><type>article</type><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</creator><creatorcontrib>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</creatorcontrib><description>[Display omitted]
•A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed.
To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2018.08.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Intermetallic ; A. Metal coatings ; Activated sintering ; Alloys ; B. EPMA ; B. TEM ; B. Thermal cycling ; C. Oxidation ; Intermetallic compounds ; Microstructure ; Molybdenum disilicides ; Oxidation ; Oxidation resistance ; Protective coatings ; Shock heating ; Silicon dioxide ; Slurries ; Tantalum base alloys ; Thermal cycling ; Thermal protection ; Yttria-stabilized zirconia ; Zirconium dioxide ; Zirconium silicate</subject><ispartof>Corrosion science, 2018-10, Vol.143, p.116-128</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</citedby><cites>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</cites><orcidid>0000-0002-2883-5523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X18300489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids></links><search><creatorcontrib>Cai, Zhenyang</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Daxu</creatorcontrib><creatorcontrib>Wu, Yonghuang</creatorcontrib><creatorcontrib>Wen, Jianxi</creatorcontrib><creatorcontrib>Tian, Gengyu</creatorcontrib><creatorcontrib>Cao, Qinxuan</creatorcontrib><creatorcontrib>Tang, Xinyang</creatorcontrib><creatorcontrib>Xiao, Lairong</creatorcontrib><creatorcontrib>Liu, Sainan</creatorcontrib><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><title>Corrosion science</title><description>[Display omitted]
•A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed.
To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</description><subject>A. Intermetallic</subject><subject>A. Metal coatings</subject><subject>Activated sintering</subject><subject>Alloys</subject><subject>B. EPMA</subject><subject>B. TEM</subject><subject>B. Thermal cycling</subject><subject>C. Oxidation</subject><subject>Intermetallic compounds</subject><subject>Microstructure</subject><subject>Molybdenum disilicides</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Protective coatings</subject><subject>Shock heating</subject><subject>Silicon dioxide</subject><subject>Slurries</subject><subject>Tantalum base alloys</subject><subject>Thermal cycling</subject><subject>Thermal protection</subject><subject>Yttria-stabilized zirconia</subject><subject>Zirconium dioxide</subject><subject>Zirconium silicate</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CLgeupNOp2ZbAQp_kHFhRV_NiFNbkrKdFKTqdidW9_GZ_BRfBJTxrVw4G6-cy7nEHLMYMCAFaeLgfYhajfgwKoBJEG5Q3qsKkUGuSh2SQ-AQSaG1dM-OYhxAQCJhR6Z3zodfGzDWrfrgFQ1hvp3Z1TrfEMDRhdb1Wik3lJFn-9f6NIbZx0aGl3ttDNItU90M6fWBzpV2SNVde03VLWUVQA_H5_fX-NDsmdVHfHo7_bJw-XFdHydTe6ubsbnk0zzXLRZrsWw5CPFAGGmK64xL8EaazUKKxBFlSuGs2JWcSZyocSoLNmIFwUTypjCDPvkpMtdBf-6xtjKhV-HJr2UnHEhUnzBE5V31LZ7DGjlKrilChvJQG4nlQvZTSq3k0pIgjLZzjobpgZvDoNMBKZ1jAuoW2m8-z_gF7KpgrM</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Cai, Zhenyang</creator><creator>Zhao, Xiaojun</creator><creator>Zhang, Daxu</creator><creator>Wu, Yonghuang</creator><creator>Wen, Jianxi</creator><creator>Tian, Gengyu</creator><creator>Cao, Qinxuan</creator><creator>Tang, Xinyang</creator><creator>Xiao, Lairong</creator><creator>Liu, Sainan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2883-5523</orcidid></search><sort><creationdate>201810</creationdate><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><author>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A. Intermetallic</topic><topic>A. Metal coatings</topic><topic>Activated sintering</topic><topic>Alloys</topic><topic>B. EPMA</topic><topic>B. TEM</topic><topic>B. Thermal cycling</topic><topic>C. Oxidation</topic><topic>Intermetallic compounds</topic><topic>Microstructure</topic><topic>Molybdenum disilicides</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Protective coatings</topic><topic>Shock heating</topic><topic>Silicon dioxide</topic><topic>Slurries</topic><topic>Tantalum base alloys</topic><topic>Thermal cycling</topic><topic>Thermal protection</topic><topic>Yttria-stabilized zirconia</topic><topic>Zirconium dioxide</topic><topic>Zirconium silicate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhenyang</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Daxu</creatorcontrib><creatorcontrib>Wu, Yonghuang</creatorcontrib><creatorcontrib>Wen, Jianxi</creatorcontrib><creatorcontrib>Tian, Gengyu</creatorcontrib><creatorcontrib>Cao, Qinxuan</creatorcontrib><creatorcontrib>Tang, Xinyang</creatorcontrib><creatorcontrib>Xiao, Lairong</creatorcontrib><creatorcontrib>Liu, Sainan</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhenyang</au><au>Zhao, Xiaojun</au><au>Zhang, Daxu</au><au>Wu, Yonghuang</au><au>Wen, Jianxi</au><au>Tian, Gengyu</au><au>Cao, Qinxuan</au><au>Tang, Xinyang</au><au>Xiao, Lairong</au><au>Liu, Sainan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</atitle><jtitle>Corrosion science</jtitle><date>2018-10</date><risdate>2018</risdate><volume>143</volume><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted]
•A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed.
To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2018.08.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2883-5523</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2018-10, Vol.143, p.116-128 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2129993762 |
source | Elsevier ScienceDirect Journals |
subjects | A. Intermetallic A. Metal coatings Activated sintering Alloys B. EPMA B. TEM B. Thermal cycling C. Oxidation Intermetallic compounds Microstructure Molybdenum disilicides Oxidation Oxidation resistance Protective coatings Shock heating Silicon dioxide Slurries Tantalum base alloys Thermal cycling Thermal protection Yttria-stabilized zirconia Zirconium dioxide Zirconium silicate |
title | Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20oxidation%20resistance%20of%20a%20YSZ%20modified%20silicide%20coating%20for%20Ta-W%20alloy%20at%201800%E2%80%89%C2%B0C&rft.jtitle=Corrosion%20science&rft.au=Cai,%20Zhenyang&rft.date=2018-10&rft.volume=143&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2018.08.007&rft_dat=%3Cproquest_cross%3E2129993762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129993762&rft_id=info:pmid/&rft_els_id=S0010938X18300489&rfr_iscdi=true |