Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C

[Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2018-10, Vol.143, p.116-128
Hauptverfasser: Cai, Zhenyang, Zhao, Xiaojun, Zhang, Daxu, Wu, Yonghuang, Wen, Jianxi, Tian, Gengyu, Cao, Qinxuan, Tang, Xinyang, Xiao, Lairong, Liu, Sainan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 116
container_title Corrosion science
container_volume 143
creator Cai, Zhenyang
Zhao, Xiaojun
Zhang, Daxu
Wu, Yonghuang
Wen, Jianxi
Tian, Gengyu
Cao, Qinxuan
Tang, Xinyang
Xiao, Lairong
Liu, Sainan
description [Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed. To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.
doi_str_mv 10.1016/j.corsci.2018.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129993762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18300489</els_id><sourcerecordid>2129993762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CLgeupNOp2ZbAQp_kHFhRV_NiFNbkrKdFKTqdidW9_GZ_BRfBJTxrVw4G6-cy7nEHLMYMCAFaeLgfYhajfgwKoBJEG5Q3qsKkUGuSh2SQ-AQSaG1dM-OYhxAQCJhR6Z3zodfGzDWrfrgFQ1hvp3Z1TrfEMDRhdb1Wik3lJFn-9f6NIbZx0aGl3ttDNItU90M6fWBzpV2SNVde03VLWUVQA_H5_fX-NDsmdVHfHo7_bJw-XFdHydTe6ubsbnk0zzXLRZrsWw5CPFAGGmK64xL8EaazUKKxBFlSuGs2JWcSZyocSoLNmIFwUTypjCDPvkpMtdBf-6xtjKhV-HJr2UnHEhUnzBE5V31LZ7DGjlKrilChvJQG4nlQvZTSq3k0pIgjLZzjobpgZvDoNMBKZ1jAuoW2m8-z_gF7KpgrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129993762</pqid></control><display><type>article</type><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</creator><creatorcontrib>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</creatorcontrib><description>[Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed. To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2018.08.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Intermetallic ; A. Metal coatings ; Activated sintering ; Alloys ; B. EPMA ; B. TEM ; B. Thermal cycling ; C. Oxidation ; Intermetallic compounds ; Microstructure ; Molybdenum disilicides ; Oxidation ; Oxidation resistance ; Protective coatings ; Shock heating ; Silicon dioxide ; Slurries ; Tantalum base alloys ; Thermal cycling ; Thermal protection ; Yttria-stabilized zirconia ; Zirconium dioxide ; Zirconium silicate</subject><ispartof>Corrosion science, 2018-10, Vol.143, p.116-128</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</citedby><cites>FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</cites><orcidid>0000-0002-2883-5523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X18300489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids></links><search><creatorcontrib>Cai, Zhenyang</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Daxu</creatorcontrib><creatorcontrib>Wu, Yonghuang</creatorcontrib><creatorcontrib>Wen, Jianxi</creatorcontrib><creatorcontrib>Tian, Gengyu</creatorcontrib><creatorcontrib>Cao, Qinxuan</creatorcontrib><creatorcontrib>Tang, Xinyang</creatorcontrib><creatorcontrib>Xiao, Lairong</creatorcontrib><creatorcontrib>Liu, Sainan</creatorcontrib><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><title>Corrosion science</title><description>[Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed. To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</description><subject>A. Intermetallic</subject><subject>A. Metal coatings</subject><subject>Activated sintering</subject><subject>Alloys</subject><subject>B. EPMA</subject><subject>B. TEM</subject><subject>B. Thermal cycling</subject><subject>C. Oxidation</subject><subject>Intermetallic compounds</subject><subject>Microstructure</subject><subject>Molybdenum disilicides</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Protective coatings</subject><subject>Shock heating</subject><subject>Silicon dioxide</subject><subject>Slurries</subject><subject>Tantalum base alloys</subject><subject>Thermal cycling</subject><subject>Thermal protection</subject><subject>Yttria-stabilized zirconia</subject><subject>Zirconium dioxide</subject><subject>Zirconium silicate</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CLgeupNOp2ZbAQp_kHFhRV_NiFNbkrKdFKTqdidW9_GZ_BRfBJTxrVw4G6-cy7nEHLMYMCAFaeLgfYhajfgwKoBJEG5Q3qsKkUGuSh2SQ-AQSaG1dM-OYhxAQCJhR6Z3zodfGzDWrfrgFQ1hvp3Z1TrfEMDRhdb1Wik3lJFn-9f6NIbZx0aGl3ttDNItU90M6fWBzpV2SNVde03VLWUVQA_H5_fX-NDsmdVHfHo7_bJw-XFdHydTe6ubsbnk0zzXLRZrsWw5CPFAGGmK64xL8EaazUKKxBFlSuGs2JWcSZyocSoLNmIFwUTypjCDPvkpMtdBf-6xtjKhV-HJr2UnHEhUnzBE5V31LZ7DGjlKrilChvJQG4nlQvZTSq3k0pIgjLZzjobpgZvDoNMBKZ1jAuoW2m8-z_gF7KpgrM</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Cai, Zhenyang</creator><creator>Zhao, Xiaojun</creator><creator>Zhang, Daxu</creator><creator>Wu, Yonghuang</creator><creator>Wen, Jianxi</creator><creator>Tian, Gengyu</creator><creator>Cao, Qinxuan</creator><creator>Tang, Xinyang</creator><creator>Xiao, Lairong</creator><creator>Liu, Sainan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2883-5523</orcidid></search><sort><creationdate>201810</creationdate><title>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</title><author>Cai, Zhenyang ; Zhao, Xiaojun ; Zhang, Daxu ; Wu, Yonghuang ; Wen, Jianxi ; Tian, Gengyu ; Cao, Qinxuan ; Tang, Xinyang ; Xiao, Lairong ; Liu, Sainan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4c93725a10e0bc82ce470fdffce9f9ee984a1eb6b821949a95771526619add6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A. Intermetallic</topic><topic>A. Metal coatings</topic><topic>Activated sintering</topic><topic>Alloys</topic><topic>B. EPMA</topic><topic>B. TEM</topic><topic>B. Thermal cycling</topic><topic>C. Oxidation</topic><topic>Intermetallic compounds</topic><topic>Microstructure</topic><topic>Molybdenum disilicides</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Protective coatings</topic><topic>Shock heating</topic><topic>Silicon dioxide</topic><topic>Slurries</topic><topic>Tantalum base alloys</topic><topic>Thermal cycling</topic><topic>Thermal protection</topic><topic>Yttria-stabilized zirconia</topic><topic>Zirconium dioxide</topic><topic>Zirconium silicate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhenyang</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Daxu</creatorcontrib><creatorcontrib>Wu, Yonghuang</creatorcontrib><creatorcontrib>Wen, Jianxi</creatorcontrib><creatorcontrib>Tian, Gengyu</creatorcontrib><creatorcontrib>Cao, Qinxuan</creatorcontrib><creatorcontrib>Tang, Xinyang</creatorcontrib><creatorcontrib>Xiao, Lairong</creatorcontrib><creatorcontrib>Liu, Sainan</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhenyang</au><au>Zhao, Xiaojun</au><au>Zhang, Daxu</au><au>Wu, Yonghuang</au><au>Wen, Jianxi</au><au>Tian, Gengyu</au><au>Cao, Qinxuan</au><au>Tang, Xinyang</au><au>Xiao, Lairong</au><au>Liu, Sainan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C</atitle><jtitle>Corrosion science</jtitle><date>2018-10</date><risdate>2018</risdate><volume>143</volume><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted] •A Si-Mo-YSZ coating was prepared on Ta-W alloy by slurry reaction sintering method.•The coated sample remained intact after oxidation at 1800 °C for 10 h.•The coating withstood 218 shock heating cycles from room temperature to 1800 °C.•The excellent performance was attributed to the dense SiO2-ZrO2-ZrSiO4 scale.•Microstructure evolution and failure mechanism of the coating were analyzed. To develop an ultra-high temperature resistant coating for a reusable thermal protection system, a YSZ-modified Si-Mo coatings were prepared on Ta-10 W alloy by slurry reaction sintering method. The coating had a MoSi2-ZrSi2-SiO2 outer layer and a TaSi2-WSi2 inner layer. The coated sample remained intact after oxidation at 1800 °C for 10 h, while the untreated alloy was pulverized after 6 min. The coating withstood more than 200 shock heating cycles from room temperature to 1800 °C. Its outstanding oxidation resistance is attributed to its thermal matching with the alloy and formation of protective SiO2 scale containing high-melting ZrSiO4 and ZrO2.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2018.08.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2883-5523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2018-10, Vol.143, p.116-128
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2129993762
source Elsevier ScienceDirect Journals
subjects A. Intermetallic
A. Metal coatings
Activated sintering
Alloys
B. EPMA
B. TEM
B. Thermal cycling
C. Oxidation
Intermetallic compounds
Microstructure
Molybdenum disilicides
Oxidation
Oxidation resistance
Protective coatings
Shock heating
Silicon dioxide
Slurries
Tantalum base alloys
Thermal cycling
Thermal protection
Yttria-stabilized zirconia
Zirconium dioxide
Zirconium silicate
title Microstructure and oxidation resistance of a YSZ modified silicide coating for Ta-W alloy at 1800 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20oxidation%20resistance%20of%20a%20YSZ%20modified%20silicide%20coating%20for%20Ta-W%20alloy%20at%201800%E2%80%89%C2%B0C&rft.jtitle=Corrosion%20science&rft.au=Cai,%20Zhenyang&rft.date=2018-10&rft.volume=143&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2018.08.007&rft_dat=%3Cproquest_cross%3E2129993762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129993762&rft_id=info:pmid/&rft_els_id=S0010938X18300489&rfr_iscdi=true