Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture

The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2009-07, Vol.29 (3), p.651-689
Hauptverfasser: Elliott, C. M., Smitheman, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 3
container_start_page 651
container_title IMA journal of numerical analysis
container_volume 29
creator Elliott, C. M.
Smitheman, S. A.
description The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.
doi_str_mv 10.1093/imanum/drn025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212979376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drn025</oup_id><sourcerecordid>1781104551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</originalsourceid><addsrcrecordid>eNqFkM1O3DAURq0KpA5Dl91blSqxCeOf2E6WaKBMpRGwGBBiY7mxPTUkcWo7aocnYN1H7JPUKCO2rHwtnfvpuweAzxidYlTThetUP3YLHXpE2AcwwyUvC8pLcgBmiAhSlLWoP4KjGB8RQiUXaAZ-X42dCa5RLVS9anfRRegtTD8N3NzBYLZjq4J7Vsn5PhMarv69_MXQOm1al3aw83mA1geoTeO7wUfXbzMIc5mtga5PHjYqJJ_Xh3aMMJk_aQzmGBxa1Ubzaf_Owe23i81yVayvL78vz9ZFQ2qWihKXtibCVFprozXCDOmKMJ6HH69_IzDhljPKrdCsJghRhlmpKsGxxaSic_Blyh2C_zWamOSjH0O-NEqCSfZBBc9QMUFN8DEGY-UQcv-wkxjJV7VyUisntZn_ug9VMZuzQfWNi29LBAtCKUOZO5k4Pw7vRu4ruJgNvcEqPEkuqGBydf8g-VJUl-c3N3JN_wOIC5nn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212979376</pqid></control><display><type>article</type><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Elliott, C. M. ; Smitheman, S. A.</creator><creatorcontrib>Elliott, C. M. ; Smitheman, S. A.</creatorcontrib><description>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott &amp; Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drn025</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>cartoon plus texture ; Exact sciences and technology ; fourth-order parabolic equation ; image decomposition ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; TV and H−1 model</subject><ispartof>IMA journal of numerical analysis, 2009-07, Vol.29 (3), p.651-689</ispartof><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2009 INIST-CNRS</rights><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21723350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, C. M.</creatorcontrib><creatorcontrib>Smitheman, S. A.</creatorcontrib><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><title>IMA journal of numerical analysis</title><description>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott &amp; Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</description><subject>cartoon plus texture</subject><subject>Exact sciences and technology</subject><subject>fourth-order parabolic equation</subject><subject>image decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>TV and H−1 model</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAURq0KpA5Dl91blSqxCeOf2E6WaKBMpRGwGBBiY7mxPTUkcWo7aocnYN1H7JPUKCO2rHwtnfvpuweAzxidYlTThetUP3YLHXpE2AcwwyUvC8pLcgBmiAhSlLWoP4KjGB8RQiUXaAZ-X42dCa5RLVS9anfRRegtTD8N3NzBYLZjq4J7Vsn5PhMarv69_MXQOm1al3aw83mA1geoTeO7wUfXbzMIc5mtga5PHjYqJJ_Xh3aMMJk_aQzmGBxa1Ubzaf_Owe23i81yVayvL78vz9ZFQ2qWihKXtibCVFprozXCDOmKMJ6HH69_IzDhljPKrdCsJghRhlmpKsGxxaSic_Blyh2C_zWamOSjH0O-NEqCSfZBBc9QMUFN8DEGY-UQcv-wkxjJV7VyUisntZn_ug9VMZuzQfWNi29LBAtCKUOZO5k4Pw7vRu4ruJgNvcEqPEkuqGBydf8g-VJUl-c3N3JN_wOIC5nn</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Elliott, C. M.</creator><creator>Smitheman, S. A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><author>Elliott, C. M. ; Smitheman, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>cartoon plus texture</topic><topic>Exact sciences and technology</topic><topic>fourth-order parabolic equation</topic><topic>image decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>TV and H−1 model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, C. M.</creatorcontrib><creatorcontrib>Smitheman, S. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, C. M.</au><au>Smitheman, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>651</spage><epage>689</epage><pages>651-689</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott &amp; Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drn025</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2009-07, Vol.29 (3), p.651-689
issn 0272-4979
1464-3642
language eng
recordid cdi_proquest_journals_212979376
source Oxford University Press Journals All Titles (1996-Current)
subjects cartoon plus texture
Exact sciences and technology
fourth-order parabolic equation
image decomposition
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
TV and H−1 model
title Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20the%20TV%20regularization%20and%20H%E2%88%921%20fidelity%20model%20for%20decomposing%20an%20image%20into%20cartoon%20plus%20texture&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Elliott,%20C.%20M.&rft.date=2009-07-01&rft.volume=29&rft.issue=3&rft.spage=651&rft.epage=689&rft.pages=651-689&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drn025&rft_dat=%3Cproquest_cross%3E1781104551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212979376&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drn025&rfr_iscdi=true