Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture
The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2009-07, Vol.29 (3), p.651-689 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 3 |
container_start_page | 651 |
container_title | IMA journal of numerical analysis |
container_volume | 29 |
creator | Elliott, C. M. Smitheman, S. A. |
description | The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved. |
doi_str_mv | 10.1093/imanum/drn025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212979376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drn025</oup_id><sourcerecordid>1781104551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</originalsourceid><addsrcrecordid>eNqFkM1O3DAURq0KpA5Dl91blSqxCeOf2E6WaKBMpRGwGBBiY7mxPTUkcWo7aocnYN1H7JPUKCO2rHwtnfvpuweAzxidYlTThetUP3YLHXpE2AcwwyUvC8pLcgBmiAhSlLWoP4KjGB8RQiUXaAZ-X42dCa5RLVS9anfRRegtTD8N3NzBYLZjq4J7Vsn5PhMarv69_MXQOm1al3aw83mA1geoTeO7wUfXbzMIc5mtga5PHjYqJJ_Xh3aMMJk_aQzmGBxa1Ubzaf_Owe23i81yVayvL78vz9ZFQ2qWihKXtibCVFprozXCDOmKMJ6HH69_IzDhljPKrdCsJghRhlmpKsGxxaSic_Blyh2C_zWamOSjH0O-NEqCSfZBBc9QMUFN8DEGY-UQcv-wkxjJV7VyUisntZn_ug9VMZuzQfWNi29LBAtCKUOZO5k4Pw7vRu4ruJgNvcEqPEkuqGBydf8g-VJUl-c3N3JN_wOIC5nn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212979376</pqid></control><display><type>article</type><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Elliott, C. M. ; Smitheman, S. A.</creator><creatorcontrib>Elliott, C. M. ; Smitheman, S. A.</creatorcontrib><description>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drn025</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>cartoon plus texture ; Exact sciences and technology ; fourth-order parabolic equation ; image decomposition ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; TV and H−1 model</subject><ispartof>IMA journal of numerical analysis, 2009-07, Vol.29 (3), p.651-689</ispartof><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2009 INIST-CNRS</rights><rights>The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21723350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, C. M.</creatorcontrib><creatorcontrib>Smitheman, S. A.</creatorcontrib><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><title>IMA journal of numerical analysis</title><description>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</description><subject>cartoon plus texture</subject><subject>Exact sciences and technology</subject><subject>fourth-order parabolic equation</subject><subject>image decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>TV and H−1 model</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAURq0KpA5Dl91blSqxCeOf2E6WaKBMpRGwGBBiY7mxPTUkcWo7aocnYN1H7JPUKCO2rHwtnfvpuweAzxidYlTThetUP3YLHXpE2AcwwyUvC8pLcgBmiAhSlLWoP4KjGB8RQiUXaAZ-X42dCa5RLVS9anfRRegtTD8N3NzBYLZjq4J7Vsn5PhMarv69_MXQOm1al3aw83mA1geoTeO7wUfXbzMIc5mtga5PHjYqJJ_Xh3aMMJk_aQzmGBxa1Ubzaf_Owe23i81yVayvL78vz9ZFQ2qWihKXtibCVFprozXCDOmKMJ6HH69_IzDhljPKrdCsJghRhlmpKsGxxaSic_Blyh2C_zWamOSjH0O-NEqCSfZBBc9QMUFN8DEGY-UQcv-wkxjJV7VyUisntZn_ug9VMZuzQfWNi29LBAtCKUOZO5k4Pw7vRu4ruJgNvcEqPEkuqGBydf8g-VJUl-c3N3JN_wOIC5nn</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Elliott, C. M.</creator><creator>Smitheman, S. A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</title><author>Elliott, C. M. ; Smitheman, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-414f927e8dddedd0150d8256015bedd0e7126f6536f7d5920035154a8761f1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>cartoon plus texture</topic><topic>Exact sciences and technology</topic><topic>fourth-order parabolic equation</topic><topic>image decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>TV and H−1 model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, C. M.</creatorcontrib><creatorcontrib>Smitheman, S. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, C. M.</au><au>Smitheman, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>651</spage><epage>689</epage><pages>651-689</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>The Osher–Solé–Vese (OSV) model, which is the gradient flow of an energy consisting of the total variation functional plus an H−1 fidelity term, is studied. In this paper, we build on the analysis of the OSV model which we gave in Elliott & Smitheman (2007, Comm. Pure Appl. Anal., in press). We introduce backward Euler finite-element approximations to a regularized version of the OSV initial boundary-value problem (IBVP) and to a weak formulation of the original problem. Well-posedness and unconditional Lyapunov stability of these fully discrete schemes are proved. Convergence results as the spatial mesh parameter, the time step size and the regularization parameter tend to 0 are proved. Rates of convergence as the time step size and the regularization parameter tend to 0 are found. The existence, uniqueness and Lyapunov stability of a solution to a linearly implicit finite-element approximation to the regularized version of the OSV IBVP are also proved.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drn025</doi><tpages>39</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2009-07, Vol.29 (3), p.651-689 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_proquest_journals_212979376 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | cartoon plus texture Exact sciences and technology fourth-order parabolic equation image decomposition Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use TV and H−1 model |
title | Numerical analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20the%20TV%20regularization%20and%20H%E2%88%921%20fidelity%20model%20for%20decomposing%20an%20image%20into%20cartoon%20plus%20texture&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Elliott,%20C.%20M.&rft.date=2009-07-01&rft.volume=29&rft.issue=3&rft.spage=651&rft.epage=689&rft.pages=651-689&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drn025&rft_dat=%3Cproquest_cross%3E1781104551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212979376&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drn025&rfr_iscdi=true |