Oxidation limited thermal boundary conductance at metal-graphene interface
Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2018-11, Vol.139, p.913-921 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | |
container_start_page | 913 |
container_title | Carbon (New York) |
container_volume | 139 |
creator | Brown, David B. Bougher, Thomas L. Cola, Baratunde A. Kumar, Satish |
description | Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2018.08.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129519191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318307267</els_id><sourcerecordid>2129519191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoHHgY8z9hJJjuZiyCLTxb2oueQR4-bYR5rJiP692ZZz9IFTUNVNVWEXFMoKNDVbVtYHcw4FAyoLCAB2AlZUFnxnMuanpIFAMh8xRg_JxfT1KazlLRckNftt3c6-nHIOt_7iC6LOwy97jIzzoPT4Sez4-BmG_VgMdMx6zHqLv8Ier_DATM_RAyNtnhJzhrdTXj1t5fk_fHhbf2cb7ZPL-v7TW5LWsW8AiF408hScg6mthqdtJo50SClaAxUdSmk0FJycNCIGqxpDLLKmprySvAluTn67sP4OeMUVTvOYUgvFaOsFrROk1jlkWXDOE0BG7UPvk9xFAV1aE216tiaOrSmIAFYkt0dZZgSfHkMarIeU3LnA9qo3Oj_N_gFkbV4Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129519191</pqid></control><display><type>article</type><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</creator><creatorcontrib>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</creatorcontrib><description>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.08.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bonding strength ; Chemical bonds ; Graphene ; Graphical user interface ; Graphite ; Metals ; Nanoelectronics ; Nanostructured materials ; Nanotechnology devices ; Nickel ; Organic chemistry ; Oxidation ; Resistance ; Silicon dioxide ; Thermal management ; Thermal resistance ; Titanium ; X ray spectra</subject><ispartof>Carbon (New York), 2018-11, Vol.139, p.913-921</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</citedby><cites>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</cites><orcidid>0000-0003-1268-9573 ; 0000-0002-1444-5671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318307267$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Bougher, Thomas L.</creatorcontrib><creatorcontrib>Cola, Baratunde A.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><title>Carbon (New York)</title><description>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications.
[Display omitted]</description><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Graphite</subject><subject>Metals</subject><subject>Nanoelectronics</subject><subject>Nanostructured materials</subject><subject>Nanotechnology devices</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Resistance</subject><subject>Silicon dioxide</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Titanium</subject><subject>X ray spectra</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoHHgY8z9hJJjuZiyCLTxb2oueQR4-bYR5rJiP692ZZz9IFTUNVNVWEXFMoKNDVbVtYHcw4FAyoLCAB2AlZUFnxnMuanpIFAMh8xRg_JxfT1KazlLRckNftt3c6-nHIOt_7iC6LOwy97jIzzoPT4Sez4-BmG_VgMdMx6zHqLv8Ier_DATM_RAyNtnhJzhrdTXj1t5fk_fHhbf2cb7ZPL-v7TW5LWsW8AiF408hScg6mthqdtJo50SClaAxUdSmk0FJycNCIGqxpDLLKmprySvAluTn67sP4OeMUVTvOYUgvFaOsFrROk1jlkWXDOE0BG7UPvk9xFAV1aE216tiaOrSmIAFYkt0dZZgSfHkMarIeU3LnA9qo3Oj_N_gFkbV4Fw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Brown, David B.</creator><creator>Bougher, Thomas L.</creator><creator>Cola, Baratunde A.</creator><creator>Kumar, Satish</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1268-9573</orcidid><orcidid>https://orcid.org/0000-0002-1444-5671</orcidid></search><sort><creationdate>20181101</creationdate><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><author>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Graphite</topic><topic>Metals</topic><topic>Nanoelectronics</topic><topic>Nanostructured materials</topic><topic>Nanotechnology devices</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Resistance</topic><topic>Silicon dioxide</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Titanium</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Bougher, Thomas L.</creatorcontrib><creatorcontrib>Cola, Baratunde A.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, David B.</au><au>Bougher, Thomas L.</au><au>Cola, Baratunde A.</au><au>Kumar, Satish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation limited thermal boundary conductance at metal-graphene interface</atitle><jtitle>Carbon (New York)</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>139</volume><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.08.002</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1268-9573</orcidid><orcidid>https://orcid.org/0000-0002-1444-5671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2018-11, Vol.139, p.913-921 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2129519191 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bonding strength Chemical bonds Graphene Graphical user interface Graphite Metals Nanoelectronics Nanostructured materials Nanotechnology devices Nickel Organic chemistry Oxidation Resistance Silicon dioxide Thermal management Thermal resistance Titanium X ray spectra |
title | Oxidation limited thermal boundary conductance at metal-graphene interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20limited%20thermal%20boundary%20conductance%20at%20metal-graphene%20interface&rft.jtitle=Carbon%20(New%20York)&rft.au=Brown,%20David%20B.&rft.date=2018-11-01&rft.volume=139&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.08.002&rft_dat=%3Cproquest_cross%3E2129519191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129519191&rft_id=info:pmid/&rft_els_id=S0008622318307267&rfr_iscdi=true |