Oxidation limited thermal boundary conductance at metal-graphene interface

Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-11, Vol.139, p.913-921
Hauptverfasser: Brown, David B., Bougher, Thomas L., Cola, Baratunde A., Kumar, Satish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue
container_start_page 913
container_title Carbon (New York)
container_volume 139
creator Brown, David B.
Bougher, Thomas L.
Cola, Baratunde A.
Kumar, Satish
description Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129519191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318307267</els_id><sourcerecordid>2129519191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoHHgY8z9hJJjuZiyCLTxb2oueQR4-bYR5rJiP692ZZz9IFTUNVNVWEXFMoKNDVbVtYHcw4FAyoLCAB2AlZUFnxnMuanpIFAMh8xRg_JxfT1KazlLRckNftt3c6-nHIOt_7iC6LOwy97jIzzoPT4Sez4-BmG_VgMdMx6zHqLv8Ier_DATM_RAyNtnhJzhrdTXj1t5fk_fHhbf2cb7ZPL-v7TW5LWsW8AiF408hScg6mthqdtJo50SClaAxUdSmk0FJycNCIGqxpDLLKmprySvAluTn67sP4OeMUVTvOYUgvFaOsFrROk1jlkWXDOE0BG7UPvk9xFAV1aE216tiaOrSmIAFYkt0dZZgSfHkMarIeU3LnA9qo3Oj_N_gFkbV4Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129519191</pqid></control><display><type>article</type><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</creator><creatorcontrib>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</creatorcontrib><description>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.08.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bonding strength ; Chemical bonds ; Graphene ; Graphical user interface ; Graphite ; Metals ; Nanoelectronics ; Nanostructured materials ; Nanotechnology devices ; Nickel ; Organic chemistry ; Oxidation ; Resistance ; Silicon dioxide ; Thermal management ; Thermal resistance ; Titanium ; X ray spectra</subject><ispartof>Carbon (New York), 2018-11, Vol.139, p.913-921</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</citedby><cites>FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</cites><orcidid>0000-0003-1268-9573 ; 0000-0002-1444-5671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622318307267$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Bougher, Thomas L.</creatorcontrib><creatorcontrib>Cola, Baratunde A.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><title>Carbon (New York)</title><description>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications. [Display omitted]</description><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Graphite</subject><subject>Metals</subject><subject>Nanoelectronics</subject><subject>Nanostructured materials</subject><subject>Nanotechnology devices</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Resistance</subject><subject>Silicon dioxide</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Titanium</subject><subject>X ray spectra</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoHHgY8z9hJJjuZiyCLTxb2oueQR4-bYR5rJiP692ZZz9IFTUNVNVWEXFMoKNDVbVtYHcw4FAyoLCAB2AlZUFnxnMuanpIFAMh8xRg_JxfT1KazlLRckNftt3c6-nHIOt_7iC6LOwy97jIzzoPT4Sez4-BmG_VgMdMx6zHqLv8Ier_DATM_RAyNtnhJzhrdTXj1t5fk_fHhbf2cb7ZPL-v7TW5LWsW8AiF408hScg6mthqdtJo50SClaAxUdSmk0FJycNCIGqxpDLLKmprySvAluTn67sP4OeMUVTvOYUgvFaOsFrROk1jlkWXDOE0BG7UPvk9xFAV1aE216tiaOrSmIAFYkt0dZZgSfHkMarIeU3LnA9qo3Oj_N_gFkbV4Fw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Brown, David B.</creator><creator>Bougher, Thomas L.</creator><creator>Cola, Baratunde A.</creator><creator>Kumar, Satish</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1268-9573</orcidid><orcidid>https://orcid.org/0000-0002-1444-5671</orcidid></search><sort><creationdate>20181101</creationdate><title>Oxidation limited thermal boundary conductance at metal-graphene interface</title><author>Brown, David B. ; Bougher, Thomas L. ; Cola, Baratunde A. ; Kumar, Satish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-70553ff848330b9caed8ca2d5fe11ebb0794585a8830d0f590cbfbe27cb913753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Graphite</topic><topic>Metals</topic><topic>Nanoelectronics</topic><topic>Nanostructured materials</topic><topic>Nanotechnology devices</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Resistance</topic><topic>Silicon dioxide</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Titanium</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Bougher, Thomas L.</creatorcontrib><creatorcontrib>Cola, Baratunde A.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, David B.</au><au>Bougher, Thomas L.</au><au>Cola, Baratunde A.</au><au>Kumar, Satish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation limited thermal boundary conductance at metal-graphene interface</atitle><jtitle>Carbon (New York)</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>139</volume><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Thermal management is a substantial challenge in high-power-density micro- and nanoelectronic devices, and the thermal resistance at the interfaces in these devices is a major bottleneck to heat removal. Graphene has emerged as a potential candidate for next generation nanoelectronic devices because of its exceptional transport properties; however, the thermal interaction between graphene and other materials such as metals is not completely understood. Here we report thermal boundary conductance (TBC) measurements at metal-graphene-metal (M-G-M) interfaces at room temperature using time-domain thermoreflectance. The metals used in this study represent two classes based on the type of bonding formed with graphene. Ti and Ni form chemisorbed interfaces (strong bonding) with graphene and high TBC is expected while Au forms physisorbed interfaces (weak bonding). The measured TBC at M-G-M interfaces showed little variation (∼30 MW/m2-K) and was similar to metal-graphene-SiO2 interfaces, contrary to high TBC predicted by previous simulation studies. X-ray photoelectron spectroscopy was used to estimate thickness of the native oxide layer of bottom Ti (2.8 nm) and Ni (2.5 nm) layers. The conductance of these thin native oxide layer was much greater than the overall TBC but prevented formation of chemisorbed interfaces between graphene and metal for Ti and Ni cases leading to significantly lower TBC and highlighting an important consideration for practical applications. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.08.002</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1268-9573</orcidid><orcidid>https://orcid.org/0000-0002-1444-5671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2018-11, Vol.139, p.913-921
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2129519191
source ScienceDirect Journals (5 years ago - present)
subjects Bonding strength
Chemical bonds
Graphene
Graphical user interface
Graphite
Metals
Nanoelectronics
Nanostructured materials
Nanotechnology devices
Nickel
Organic chemistry
Oxidation
Resistance
Silicon dioxide
Thermal management
Thermal resistance
Titanium
X ray spectra
title Oxidation limited thermal boundary conductance at metal-graphene interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20limited%20thermal%20boundary%20conductance%20at%20metal-graphene%20interface&rft.jtitle=Carbon%20(New%20York)&rft.au=Brown,%20David%20B.&rft.date=2018-11-01&rft.volume=139&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.08.002&rft_dat=%3Cproquest_cross%3E2129519191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129519191&rft_id=info:pmid/&rft_els_id=S0008622318307267&rfr_iscdi=true