Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings
NiCoCrAlY and CoNiCrAlY bond coats used for thermal barrier coatings, as well as 8 wt% Y2O3-stabilized ZrO2 (8YSZ) ceramic top coat, were air plasma sprayed on Inconel 718 superalloy and then subjected to thermal exposure at 950, 1050 °C in air. The microstructural evolution and oxidation behaviour...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2018-10, Vol.352, p.285-294 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | Surface & coatings technology |
container_volume | 352 |
creator | Weng, Wei-Xiang Wang, Yue-Meng Liao, Ye-Meng Li, Cai-Cai Li, Qiang |
description | NiCoCrAlY and CoNiCrAlY bond coats used for thermal barrier coatings, as well as 8 wt% Y2O3-stabilized ZrO2 (8YSZ) ceramic top coat, were air plasma sprayed on Inconel 718 superalloy and then subjected to thermal exposure at 950, 1050 °C in air. The microstructural evolution and oxidation behaviour of bond coats were comparatively studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the diffusion of Al is the key factor causing the microstructural changes, resulting in three zones in the bond coats: outer β-depleted zone (OBDZ), inner β-depleted zone (IBDZ) and β-left zone (BLZ). The thickness of BLZ decreases with the increasing of the heating time or temperature. NiCoCrAlY bond coat with higher Al content presents lower β-depletion rate and smaller Al interdiffusion coefficient, and the oxide scale is predominantly composed of Al2O3 whereas in the CoNiCrAlY coating, large amount of non alpha-alumina oxides have been found, resulting in the larger oxidation constant at the stable oxidation period and higher micro-crack density at the 8YSZ/TGO interface and 8YSZ coating. The results reveal that NiCoCrAlY bond coat presents better characteristics of oxidation resistance and crack resistance when used for thermal barrier coatings.
•Al diffusion is the key factor causing the microstructural changes during oxidation.•NiCoCrAlY presents lower β-depletion rate and smaller Al interdiffusion coefficient.•NiCoCrAlY based TBC presents better oxidation resistance and crack resistance. |
doi_str_mv | 10.1016/j.surfcoat.2018.08.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129519020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218308387</els_id><sourcerecordid>2129519020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b8d41e11d55fdedd81f366071076957d8f8ad133f2e00afb21d9469fd1777f243</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcvoEicU3adh5MbKOIlIbjAgZPlxDa4auOyTir4Bb4ap4Uz0kqr8c6Od4axM4Q5ApYXi3kYyXZeDXMOWM0hFs_32AwrUadZlot9NgNeiLSqBT9kRyEsAABFnc_Yd-NXa0Uu-D7xNlm5jnwYaOyGkdQyMRu_HAcXh6rXif90Wm1Ra97VxvmRpqVH1_iGrpavW1LjI96hkLQ-vkynhWQMRifWUzK8G1pF7VYROUPbsevfwgk7sGoZzOlvP2YvN9fPzV368HR731w9pF2Ww5C2lc7RIOqisNpoXaHNyhIEgijrQujKVkpjllluAJRtOeo6L2urUQhheZ4ds_Od7pr8x2jCIBfRSB-_lBx5XWANHCKr3LGmQAIZK9fkVoq-JIKccpcL-Ze7nHKXEGsrf7lbNNHDJhqUoXOm74x2ZLpBau_-k_gB7UqR5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129519020</pqid></control><display><type>article</type><title>Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings</title><source>Access via ScienceDirect (Elsevier)</source><creator>Weng, Wei-Xiang ; Wang, Yue-Meng ; Liao, Ye-Meng ; Li, Cai-Cai ; Li, Qiang</creator><creatorcontrib>Weng, Wei-Xiang ; Wang, Yue-Meng ; Liao, Ye-Meng ; Li, Cai-Cai ; Li, Qiang</creatorcontrib><description>NiCoCrAlY and CoNiCrAlY bond coats used for thermal barrier coatings, as well as 8 wt% Y2O3-stabilized ZrO2 (8YSZ) ceramic top coat, were air plasma sprayed on Inconel 718 superalloy and then subjected to thermal exposure at 950, 1050 °C in air. The microstructural evolution and oxidation behaviour of bond coats were comparatively studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the diffusion of Al is the key factor causing the microstructural changes, resulting in three zones in the bond coats: outer β-depleted zone (OBDZ), inner β-depleted zone (IBDZ) and β-left zone (BLZ). The thickness of BLZ decreases with the increasing of the heating time or temperature. NiCoCrAlY bond coat with higher Al content presents lower β-depletion rate and smaller Al interdiffusion coefficient, and the oxide scale is predominantly composed of Al2O3 whereas in the CoNiCrAlY coating, large amount of non alpha-alumina oxides have been found, resulting in the larger oxidation constant at the stable oxidation period and higher micro-crack density at the 8YSZ/TGO interface and 8YSZ coating. The results reveal that NiCoCrAlY bond coat presents better characteristics of oxidation resistance and crack resistance when used for thermal barrier coatings.
•Al diffusion is the key factor causing the microstructural changes during oxidation.•NiCoCrAlY presents lower β-depletion rate and smaller Al interdiffusion coefficient.•NiCoCrAlY based TBC presents better oxidation resistance and crack resistance.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.08.024</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air plasma ; Aluminum oxide ; Ceramic coatings ; CoNiCrAlY bond coat ; Crack propagation ; Depletion ; Evolution ; Interdiffusion ; Kinetics ; Microcracks ; Microstructural evolution ; Microstructure ; Nickel base alloys ; NiCoCrAlY bond coat ; Oxidation ; Oxidation kinetics ; Oxidation resistance ; Scale (corrosion) ; Scanning electron microscopy ; Superalloys ; Thermal barrier coatings ; Thermal resistance ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Surface & coatings technology, 2018-10, Vol.352, p.285-294</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 25, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b8d41e11d55fdedd81f366071076957d8f8ad133f2e00afb21d9469fd1777f243</citedby><cites>FETCH-LOGICAL-c340t-b8d41e11d55fdedd81f366071076957d8f8ad133f2e00afb21d9469fd1777f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Weng, Wei-Xiang</creatorcontrib><creatorcontrib>Wang, Yue-Meng</creatorcontrib><creatorcontrib>Liao, Ye-Meng</creatorcontrib><creatorcontrib>Li, Cai-Cai</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><title>Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings</title><title>Surface & coatings technology</title><description>NiCoCrAlY and CoNiCrAlY bond coats used for thermal barrier coatings, as well as 8 wt% Y2O3-stabilized ZrO2 (8YSZ) ceramic top coat, were air plasma sprayed on Inconel 718 superalloy and then subjected to thermal exposure at 950, 1050 °C in air. The microstructural evolution and oxidation behaviour of bond coats were comparatively studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the diffusion of Al is the key factor causing the microstructural changes, resulting in three zones in the bond coats: outer β-depleted zone (OBDZ), inner β-depleted zone (IBDZ) and β-left zone (BLZ). The thickness of BLZ decreases with the increasing of the heating time or temperature. NiCoCrAlY bond coat with higher Al content presents lower β-depletion rate and smaller Al interdiffusion coefficient, and the oxide scale is predominantly composed of Al2O3 whereas in the CoNiCrAlY coating, large amount of non alpha-alumina oxides have been found, resulting in the larger oxidation constant at the stable oxidation period and higher micro-crack density at the 8YSZ/TGO interface and 8YSZ coating. The results reveal that NiCoCrAlY bond coat presents better characteristics of oxidation resistance and crack resistance when used for thermal barrier coatings.
•Al diffusion is the key factor causing the microstructural changes during oxidation.•NiCoCrAlY presents lower β-depletion rate and smaller Al interdiffusion coefficient.•NiCoCrAlY based TBC presents better oxidation resistance and crack resistance.</description><subject>Air plasma</subject><subject>Aluminum oxide</subject><subject>Ceramic coatings</subject><subject>CoNiCrAlY bond coat</subject><subject>Crack propagation</subject><subject>Depletion</subject><subject>Evolution</subject><subject>Interdiffusion</subject><subject>Kinetics</subject><subject>Microcracks</subject><subject>Microstructural evolution</subject><subject>Microstructure</subject><subject>Nickel base alloys</subject><subject>NiCoCrAlY bond coat</subject><subject>Oxidation</subject><subject>Oxidation kinetics</subject><subject>Oxidation resistance</subject><subject>Scale (corrosion)</subject><subject>Scanning electron microscopy</subject><subject>Superalloys</subject><subject>Thermal barrier coatings</subject><subject>Thermal resistance</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcvoEicU3adh5MbKOIlIbjAgZPlxDa4auOyTir4Bb4ap4Uz0kqr8c6Od4axM4Q5ApYXi3kYyXZeDXMOWM0hFs_32AwrUadZlot9NgNeiLSqBT9kRyEsAABFnc_Yd-NXa0Uu-D7xNlm5jnwYaOyGkdQyMRu_HAcXh6rXif90Wm1Ra97VxvmRpqVH1_iGrpavW1LjI96hkLQ-vkynhWQMRifWUzK8G1pF7VYROUPbsevfwgk7sGoZzOlvP2YvN9fPzV368HR731w9pF2Ww5C2lc7RIOqisNpoXaHNyhIEgijrQujKVkpjllluAJRtOeo6L2urUQhheZ4ds_Od7pr8x2jCIBfRSB-_lBx5XWANHCKr3LGmQAIZK9fkVoq-JIKccpcL-Ze7nHKXEGsrf7lbNNHDJhqUoXOm74x2ZLpBau_-k_gB7UqR5w</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Weng, Wei-Xiang</creator><creator>Wang, Yue-Meng</creator><creator>Liao, Ye-Meng</creator><creator>Li, Cai-Cai</creator><creator>Li, Qiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20181025</creationdate><title>Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings</title><author>Weng, Wei-Xiang ; Wang, Yue-Meng ; Liao, Ye-Meng ; Li, Cai-Cai ; Li, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b8d41e11d55fdedd81f366071076957d8f8ad133f2e00afb21d9469fd1777f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air plasma</topic><topic>Aluminum oxide</topic><topic>Ceramic coatings</topic><topic>CoNiCrAlY bond coat</topic><topic>Crack propagation</topic><topic>Depletion</topic><topic>Evolution</topic><topic>Interdiffusion</topic><topic>Kinetics</topic><topic>Microcracks</topic><topic>Microstructural evolution</topic><topic>Microstructure</topic><topic>Nickel base alloys</topic><topic>NiCoCrAlY bond coat</topic><topic>Oxidation</topic><topic>Oxidation kinetics</topic><topic>Oxidation resistance</topic><topic>Scale (corrosion)</topic><topic>Scanning electron microscopy</topic><topic>Superalloys</topic><topic>Thermal barrier coatings</topic><topic>Thermal resistance</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Wei-Xiang</creatorcontrib><creatorcontrib>Wang, Yue-Meng</creatorcontrib><creatorcontrib>Liao, Ye-Meng</creatorcontrib><creatorcontrib>Li, Cai-Cai</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Wei-Xiang</au><au>Wang, Yue-Meng</au><au>Liao, Ye-Meng</au><au>Li, Cai-Cai</au><au>Li, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings</atitle><jtitle>Surface & coatings technology</jtitle><date>2018-10-25</date><risdate>2018</risdate><volume>352</volume><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>NiCoCrAlY and CoNiCrAlY bond coats used for thermal barrier coatings, as well as 8 wt% Y2O3-stabilized ZrO2 (8YSZ) ceramic top coat, were air plasma sprayed on Inconel 718 superalloy and then subjected to thermal exposure at 950, 1050 °C in air. The microstructural evolution and oxidation behaviour of bond coats were comparatively studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the diffusion of Al is the key factor causing the microstructural changes, resulting in three zones in the bond coats: outer β-depleted zone (OBDZ), inner β-depleted zone (IBDZ) and β-left zone (BLZ). The thickness of BLZ decreases with the increasing of the heating time or temperature. NiCoCrAlY bond coat with higher Al content presents lower β-depletion rate and smaller Al interdiffusion coefficient, and the oxide scale is predominantly composed of Al2O3 whereas in the CoNiCrAlY coating, large amount of non alpha-alumina oxides have been found, resulting in the larger oxidation constant at the stable oxidation period and higher micro-crack density at the 8YSZ/TGO interface and 8YSZ coating. The results reveal that NiCoCrAlY bond coat presents better characteristics of oxidation resistance and crack resistance when used for thermal barrier coatings.
•Al diffusion is the key factor causing the microstructural changes during oxidation.•NiCoCrAlY presents lower β-depletion rate and smaller Al interdiffusion coefficient.•NiCoCrAlY based TBC presents better oxidation resistance and crack resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.08.024</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2018-10, Vol.352, p.285-294 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2129519020 |
source | Access via ScienceDirect (Elsevier) |
subjects | Air plasma Aluminum oxide Ceramic coatings CoNiCrAlY bond coat Crack propagation Depletion Evolution Interdiffusion Kinetics Microcracks Microstructural evolution Microstructure Nickel base alloys NiCoCrAlY bond coat Oxidation Oxidation kinetics Oxidation resistance Scale (corrosion) Scanning electron microscopy Superalloys Thermal barrier coatings Thermal resistance Yttrium oxide Zirconium dioxide |
title | Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20microstructural%20evolution%20and%20oxidation%20behaviour%20of%20NiCoCrAlY%20and%20CoNiCrAlY%20as%20bond%20coats%20used%20for%20thermal%20barrier%20coatings&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Weng,%20Wei-Xiang&rft.date=2018-10-25&rft.volume=352&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.08.024&rft_dat=%3Cproquest_cross%3E2129519020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129519020&rft_id=info:pmid/&rft_els_id=S0257897218308387&rfr_iscdi=true |