Bulk diffusive relaxation mechanisms in optically excited topological insulators
The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reve...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-03, Vol.95 (11), p.115431, Article 115431 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115431 |
container_title | Physical review. B |
container_volume | 95 |
creator | Sterzi, A. Manzoni, G. Sbuelz, L. Cilento, F. Zacchigna, M. Bugnon, Ph Magrez, A. Berger, H. Crepaldi, A. Parmigiani, F. |
description | The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure. When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states. |
doi_str_mv | 10.1103/PhysRevB.95.115431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129517733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129517733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-95b7e7d5e4f05369a64b4d2c0092b99cc9ba8a24885ab813a29f70143d23f9213</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFcFrzvz2fZcuuEXCA7R65CmicvMmpq0Y_v3dky9eg8vD-eFB6FrgueEYHa7Wh_Sm9kt5iDGQnBGztCE8gJygALO_2-BL9EspQ3GmBQYSgwTtFoM_itrnLVDcjuTRePVXvUutNnW6LVqXdqmzLVZ6HqnlfeHzOy1602T9aELPnwe2xFIg1d9iOkKXVjlk5n95hR9PNy_L5_yl9fH5-XdS64ZJ30Ooi5N2QjDLRasAFXwmjdUYwy0BtAaalUpyqtKqLoiTFGwJSacNZRZoIRN0c3pbxfD92BSLzdhiO04KSmhIEhZMjZS9ETpGFKKxsouuq2KB0mwPMqTf_IkCHmSx34ATbpkwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129517733</pqid></control><display><type>article</type><title>Bulk diffusive relaxation mechanisms in optically excited topological insulators</title><source>American Physical Society Journals</source><creator>Sterzi, A. ; Manzoni, G. ; Sbuelz, L. ; Cilento, F. ; Zacchigna, M. ; Bugnon, Ph ; Magrez, A. ; Berger, H. ; Crepaldi, A. ; Parmigiani, F.</creator><creatorcontrib>Sterzi, A. ; Manzoni, G. ; Sbuelz, L. ; Cilento, F. ; Zacchigna, M. ; Bugnon, Ph ; Magrez, A. ; Berger, H. ; Crepaldi, A. ; Parmigiani, F.</creatorcontrib><description>The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure. When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.95.115431</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Optical properties ; Optical pulses ; Photoelectric emission ; Temperature gradients ; Topological insulators</subject><ispartof>Physical review. B, 2017-03, Vol.95 (11), p.115431, Article 115431</ispartof><rights>Copyright American Physical Society Mar 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-95b7e7d5e4f05369a64b4d2c0092b99cc9ba8a24885ab813a29f70143d23f9213</citedby><cites>FETCH-LOGICAL-c341t-95b7e7d5e4f05369a64b4d2c0092b99cc9ba8a24885ab813a29f70143d23f9213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Sterzi, A.</creatorcontrib><creatorcontrib>Manzoni, G.</creatorcontrib><creatorcontrib>Sbuelz, L.</creatorcontrib><creatorcontrib>Cilento, F.</creatorcontrib><creatorcontrib>Zacchigna, M.</creatorcontrib><creatorcontrib>Bugnon, Ph</creatorcontrib><creatorcontrib>Magrez, A.</creatorcontrib><creatorcontrib>Berger, H.</creatorcontrib><creatorcontrib>Crepaldi, A.</creatorcontrib><creatorcontrib>Parmigiani, F.</creatorcontrib><title>Bulk diffusive relaxation mechanisms in optically excited topological insulators</title><title>Physical review. B</title><description>The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure. When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states.</description><subject>Optical properties</subject><subject>Optical pulses</subject><subject>Photoelectric emission</subject><subject>Temperature gradients</subject><subject>Topological insulators</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFcFrzvz2fZcuuEXCA7R65CmicvMmpq0Y_v3dky9eg8vD-eFB6FrgueEYHa7Wh_Sm9kt5iDGQnBGztCE8gJygALO_2-BL9EspQ3GmBQYSgwTtFoM_itrnLVDcjuTRePVXvUutNnW6LVqXdqmzLVZ6HqnlfeHzOy1602T9aELPnwe2xFIg1d9iOkKXVjlk5n95hR9PNy_L5_yl9fH5-XdS64ZJ30Ooi5N2QjDLRasAFXwmjdUYwy0BtAaalUpyqtKqLoiTFGwJSacNZRZoIRN0c3pbxfD92BSLzdhiO04KSmhIEhZMjZS9ETpGFKKxsouuq2KB0mwPMqTf_IkCHmSx34ATbpkwQ</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Sterzi, A.</creator><creator>Manzoni, G.</creator><creator>Sbuelz, L.</creator><creator>Cilento, F.</creator><creator>Zacchigna, M.</creator><creator>Bugnon, Ph</creator><creator>Magrez, A.</creator><creator>Berger, H.</creator><creator>Crepaldi, A.</creator><creator>Parmigiani, F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170327</creationdate><title>Bulk diffusive relaxation mechanisms in optically excited topological insulators</title><author>Sterzi, A. ; Manzoni, G. ; Sbuelz, L. ; Cilento, F. ; Zacchigna, M. ; Bugnon, Ph ; Magrez, A. ; Berger, H. ; Crepaldi, A. ; Parmigiani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-95b7e7d5e4f05369a64b4d2c0092b99cc9ba8a24885ab813a29f70143d23f9213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Optical properties</topic><topic>Optical pulses</topic><topic>Photoelectric emission</topic><topic>Temperature gradients</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sterzi, A.</creatorcontrib><creatorcontrib>Manzoni, G.</creatorcontrib><creatorcontrib>Sbuelz, L.</creatorcontrib><creatorcontrib>Cilento, F.</creatorcontrib><creatorcontrib>Zacchigna, M.</creatorcontrib><creatorcontrib>Bugnon, Ph</creatorcontrib><creatorcontrib>Magrez, A.</creatorcontrib><creatorcontrib>Berger, H.</creatorcontrib><creatorcontrib>Crepaldi, A.</creatorcontrib><creatorcontrib>Parmigiani, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sterzi, A.</au><au>Manzoni, G.</au><au>Sbuelz, L.</au><au>Cilento, F.</au><au>Zacchigna, M.</au><au>Bugnon, Ph</au><au>Magrez, A.</au><au>Berger, H.</au><au>Crepaldi, A.</au><au>Parmigiani, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk diffusive relaxation mechanisms in optically excited topological insulators</atitle><jtitle>Physical review. B</jtitle><date>2017-03-27</date><risdate>2017</risdate><volume>95</volume><issue>11</issue><spage>115431</spage><pages>115431-</pages><artnum>115431</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure. When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.95.115431</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-03, Vol.95 (11), p.115431, Article 115431 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2129517733 |
source | American Physical Society Journals |
subjects | Optical properties Optical pulses Photoelectric emission Temperature gradients Topological insulators |
title | Bulk diffusive relaxation mechanisms in optically excited topological insulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20diffusive%20relaxation%20mechanisms%20in%20optically%20excited%20topological%20insulators&rft.jtitle=Physical%20review.%20B&rft.au=Sterzi,%20A.&rft.date=2017-03-27&rft.volume=95&rft.issue=11&rft.spage=115431&rft.pages=115431-&rft.artnum=115431&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.95.115431&rft_dat=%3Cproquest_cross%3E2129517733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129517733&rft_id=info:pmid/&rfr_iscdi=true |