Harmful Content Detection Based on Cascaded Adaptive Boosting

Recently, it has become very easy to acquire various types of image contents through mobile devices with high-performance visual sensors. However, harmful image contents such as nude pictures and videos are also distributed and spread easily. Therefore, various methods for effectively detecting and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2018-01, Vol.2018 (2018), p.1-12
Hauptverfasser: Jang, Seok-Woo, Lee, Sang-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2018
container_start_page 1
container_title Journal of sensors
container_volume 2018
creator Jang, Seok-Woo
Lee, Sang-Hong
description Recently, it has become very easy to acquire various types of image contents through mobile devices with high-performance visual sensors. However, harmful image contents such as nude pictures and videos are also distributed and spread easily. Therefore, various methods for effectively detecting and filtering such image contents are being introduced continuously. In this paper, we propose a new approach to robustly detect the human navel area, which is an element representing the harmfulness of the image, using Haar-like features and a cascaded AdaBoost algorithm. In the proposed method, the nipple area of a human is detected first using the color information from the input image and the candidate navel regions are detected using positional information relative to the detected nipple area. Nonnavel areas are then removed from the candidate navel regions and only the actual navel areas are robustly detected through filtering using the Haar-like feature and the cascaded AdaBoost algorithm. The experimental results show that the proposed method extracts nipple and navel areas more precisely than the conventional method. The proposed navel area detection algorithm is expected to be used effectively in various applications related to the detection of harmful contents.
doi_str_mv 10.1155/2018/7497243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2129411421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129411421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6bf2427d961d7bf9a44f5714cc74d4300fcd466d1c6337638b2718e1f78074b73</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpd3iRN0oMHVz8mDLwoeAtpPrRja2eSKf73dnTo0dP7HH48LzwInQK-AiiKCcEgJ4KVgjC6h0bApcgF4XL_Nxevh-goxgXGnApKR-h6psPKb5ZZ1bXJtSm7dcmZ1HRtNtXR2awPlY5G2z7fWL1OzafLpl0XU9O-HaMDr5fRnezuGL3c3z1Xs3z-9PBY3cxzQyVLOa89YUTYkoMVtS81Y74QwIwRzDKKsTeWcW7BcEoFp7ImAqQDLyQWrBZ0jM6H3nXoPjYuJrXoNqHtXyoCpGQAjECvLgdlQhdjcF6tQ7PS4VsBVtuB1HYgtRuo5xcDf29aq7-a__TZoF1vnNd_mmCCGaE_Qglszg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129411421</pqid></control><display><type>article</type><title>Harmful Content Detection Based on Cascaded Adaptive Boosting</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jang, Seok-Woo ; Lee, Sang-Hong</creator><contributor>Sendra, Sandra</contributor><creatorcontrib>Jang, Seok-Woo ; Lee, Sang-Hong ; Sendra, Sandra</creatorcontrib><description>Recently, it has become very easy to acquire various types of image contents through mobile devices with high-performance visual sensors. However, harmful image contents such as nude pictures and videos are also distributed and spread easily. Therefore, various methods for effectively detecting and filtering such image contents are being introduced continuously. In this paper, we propose a new approach to robustly detect the human navel area, which is an element representing the harmfulness of the image, using Haar-like features and a cascaded AdaBoost algorithm. In the proposed method, the nipple area of a human is detected first using the color information from the input image and the candidate navel regions are detected using positional information relative to the detected nipple area. Nonnavel areas are then removed from the candidate navel regions and only the actual navel areas are robustly detected through filtering using the Haar-like feature and the cascaded AdaBoost algorithm. The experimental results show that the proposed method extracts nipple and navel areas more precisely than the conventional method. The proposed navel area detection algorithm is expected to be used effectively in various applications related to the detection of harmful contents.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2018/7497243</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer science ; Electronic devices ; Filtration ; Image acquisition ; Image detection ; Image filters ; Image retrieval ; Internet ; Machine learning ; Methods ; Morphology ; Multimedia ; Performance evaluation ; Personal information ; Pictures ; Skin ; Wireless networks</subject><ispartof>Journal of sensors, 2018-01, Vol.2018 (2018), p.1-12</ispartof><rights>Copyright © 2018 Seok-Woo Jang and Sang-Hong Lee.</rights><rights>Copyright © 2018 Seok-Woo Jang and Sang-Hong Lee. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c384t-6bf2427d961d7bf9a44f5714cc74d4300fcd466d1c6337638b2718e1f78074b73</cites><orcidid>0000-0001-5580-4098 ; 0000-0001-7543-9788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Sendra, Sandra</contributor><creatorcontrib>Jang, Seok-Woo</creatorcontrib><creatorcontrib>Lee, Sang-Hong</creatorcontrib><title>Harmful Content Detection Based on Cascaded Adaptive Boosting</title><title>Journal of sensors</title><description>Recently, it has become very easy to acquire various types of image contents through mobile devices with high-performance visual sensors. However, harmful image contents such as nude pictures and videos are also distributed and spread easily. Therefore, various methods for effectively detecting and filtering such image contents are being introduced continuously. In this paper, we propose a new approach to robustly detect the human navel area, which is an element representing the harmfulness of the image, using Haar-like features and a cascaded AdaBoost algorithm. In the proposed method, the nipple area of a human is detected first using the color information from the input image and the candidate navel regions are detected using positional information relative to the detected nipple area. Nonnavel areas are then removed from the candidate navel regions and only the actual navel areas are robustly detected through filtering using the Haar-like feature and the cascaded AdaBoost algorithm. The experimental results show that the proposed method extracts nipple and navel areas more precisely than the conventional method. The proposed navel area detection algorithm is expected to be used effectively in various applications related to the detection of harmful contents.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Electronic devices</subject><subject>Filtration</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Image filters</subject><subject>Image retrieval</subject><subject>Internet</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Morphology</subject><subject>Multimedia</subject><subject>Performance evaluation</subject><subject>Personal information</subject><subject>Pictures</subject><subject>Skin</subject><subject>Wireless networks</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpd3iRN0oMHVz8mDLwoeAtpPrRja2eSKf73dnTo0dP7HH48LzwInQK-AiiKCcEgJ4KVgjC6h0bApcgF4XL_Nxevh-goxgXGnApKR-h6psPKb5ZZ1bXJtSm7dcmZ1HRtNtXR2awPlY5G2z7fWL1OzafLpl0XU9O-HaMDr5fRnezuGL3c3z1Xs3z-9PBY3cxzQyVLOa89YUTYkoMVtS81Y74QwIwRzDKKsTeWcW7BcEoFp7ImAqQDLyQWrBZ0jM6H3nXoPjYuJrXoNqHtXyoCpGQAjECvLgdlQhdjcF6tQ7PS4VsBVtuB1HYgtRuo5xcDf29aq7-a__TZoF1vnNd_mmCCGaE_Qglszg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Jang, Seok-Woo</creator><creator>Lee, Sang-Hong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5580-4098</orcidid><orcidid>https://orcid.org/0000-0001-7543-9788</orcidid></search><sort><creationdate>20180101</creationdate><title>Harmful Content Detection Based on Cascaded Adaptive Boosting</title><author>Jang, Seok-Woo ; Lee, Sang-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6bf2427d961d7bf9a44f5714cc74d4300fcd466d1c6337638b2718e1f78074b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Electronic devices</topic><topic>Filtration</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Image filters</topic><topic>Image retrieval</topic><topic>Internet</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Morphology</topic><topic>Multimedia</topic><topic>Performance evaluation</topic><topic>Personal information</topic><topic>Pictures</topic><topic>Skin</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Seok-Woo</creatorcontrib><creatorcontrib>Lee, Sang-Hong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Seok-Woo</au><au>Lee, Sang-Hong</au><au>Sendra, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmful Content Detection Based on Cascaded Adaptive Boosting</atitle><jtitle>Journal of sensors</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Recently, it has become very easy to acquire various types of image contents through mobile devices with high-performance visual sensors. However, harmful image contents such as nude pictures and videos are also distributed and spread easily. Therefore, various methods for effectively detecting and filtering such image contents are being introduced continuously. In this paper, we propose a new approach to robustly detect the human navel area, which is an element representing the harmfulness of the image, using Haar-like features and a cascaded AdaBoost algorithm. In the proposed method, the nipple area of a human is detected first using the color information from the input image and the candidate navel regions are detected using positional information relative to the detected nipple area. Nonnavel areas are then removed from the candidate navel regions and only the actual navel areas are robustly detected through filtering using the Haar-like feature and the cascaded AdaBoost algorithm. The experimental results show that the proposed method extracts nipple and navel areas more precisely than the conventional method. The proposed navel area detection algorithm is expected to be used effectively in various applications related to the detection of harmful contents.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7497243</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5580-4098</orcidid><orcidid>https://orcid.org/0000-0001-7543-9788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2018-01, Vol.2018 (2018), p.1-12
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2129411421
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Computer science
Electronic devices
Filtration
Image acquisition
Image detection
Image filters
Image retrieval
Internet
Machine learning
Methods
Morphology
Multimedia
Performance evaluation
Personal information
Pictures
Skin
Wireless networks
title Harmful Content Detection Based on Cascaded Adaptive Boosting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmful%20Content%20Detection%20Based%20on%20Cascaded%20Adaptive%20Boosting&rft.jtitle=Journal%20of%20sensors&rft.au=Jang,%20Seok-Woo&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2018/7497243&rft_dat=%3Cproquest_cross%3E2129411421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129411421&rft_id=info:pmid/&rfr_iscdi=true