Mixed finite element approximation of eddy current problems
Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to intro...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2004-04, Vol.24 (2), p.255-271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 2 |
container_start_page | 255 |
container_title | IMA journal of numerical analysis |
container_volume | 24 |
creator | Rodríguez, Ana Alonso Hiptmair, Ralf Valli, Alberto |
description | Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns. |
doi_str_mv | 10.1093/imanum/24.2.255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212924823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>585163941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKtnr4vgcdvk5RtPWtSKVREUxEvIZrOwtd2tyS60_72RLXp6h_nNDG8QOid4QrCm03ptm349BTaBCXB-gEaECZZTweAQjTBIyJmW-hidxLjEGDMh8QhdPdVbX2ZV3dSdz_zKr33TZXazCe02JXZ122Rtlfmy3GWuD-FXTVqRwHiKjiq7iv5sf8fo_e72bTbPFy_3D7PrRe6o5F3ubakkCGUrClayUjqlGKFUFCWTBS-YE4pZawvpHdMYc64IYOmJ1VhrK-kYXQy5qfi797Ezy7YPTao0QEADU0ATNB0gF9oYg6_MJqQHws4QbH4HMsNABpgBkwZKjst9rI3OrqpgG1fHfxsXmkMyjlE-cHXs_PZPt-HLCJk-NPOPT_N6w_Gzgkcj6Q_9rHWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212924823</pqid></control><display><type>article</type><title>Mixed finite element approximation of eddy current problems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</creator><creatorcontrib>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</creatorcontrib><description>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/24.2.255</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>eddy current problems ; Exact sciences and technology ; Langrange multipliers ; Mathematics ; mixed finite elements ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>IMA journal of numerical analysis, 2004-04, Vol.24 (2), p.255-271</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15695209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez, Ana Alonso</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><title>Mixed finite element approximation of eddy current problems</title><title>IMA journal of numerical analysis</title><addtitle>IMA J Numer Anal</addtitle><description>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</description><subject>eddy current problems</subject><subject>Exact sciences and technology</subject><subject>Langrange multipliers</subject><subject>Mathematics</subject><subject>mixed finite elements</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKtnr4vgcdvk5RtPWtSKVREUxEvIZrOwtd2tyS60_72RLXp6h_nNDG8QOid4QrCm03ptm349BTaBCXB-gEaECZZTweAQjTBIyJmW-hidxLjEGDMh8QhdPdVbX2ZV3dSdz_zKr33TZXazCe02JXZ122Rtlfmy3GWuD-FXTVqRwHiKjiq7iv5sf8fo_e72bTbPFy_3D7PrRe6o5F3ubakkCGUrClayUjqlGKFUFCWTBS-YE4pZawvpHdMYc64IYOmJ1VhrK-kYXQy5qfi797Ezy7YPTao0QEADU0ATNB0gF9oYg6_MJqQHws4QbH4HMsNABpgBkwZKjst9rI3OrqpgG1fHfxsXmkMyjlE-cHXs_PZPt-HLCJk-NPOPT_N6w_Gzgkcj6Q_9rHWz</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Rodríguez, Ana Alonso</creator><creator>Hiptmair, Ralf</creator><creator>Valli, Alberto</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040401</creationdate><title>Mixed finite element approximation of eddy current problems</title><author>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>eddy current problems</topic><topic>Exact sciences and technology</topic><topic>Langrange multipliers</topic><topic>Mathematics</topic><topic>mixed finite elements</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Ana Alonso</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Ana Alonso</au><au>Hiptmair, Ralf</au><au>Valli, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite element approximation of eddy current problems</atitle><jtitle>IMA journal of numerical analysis</jtitle><addtitle>IMA J Numer Anal</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>24</volume><issue>2</issue><spage>255</spage><epage>271</epage><pages>255-271</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/24.2.255</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2004-04, Vol.24 (2), p.255-271 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_proquest_journals_212924823 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | eddy current problems Exact sciences and technology Langrange multipliers Mathematics mixed finite elements Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Sciences and techniques of general use |
title | Mixed finite element approximation of eddy current problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20element%20approximation%20of%20eddy%20current%20problems&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Rodri%CC%81guez,%20Ana%20Alonso&rft.date=2004-04-01&rft.volume=24&rft.issue=2&rft.spage=255&rft.epage=271&rft.pages=255-271&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/24.2.255&rft_dat=%3Cproquest_cross%3E585163941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212924823&rft_id=info:pmid/&rfr_iscdi=true |