Mixed finite element approximation of eddy current problems

Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2004-04, Vol.24 (2), p.255-271
Hauptverfasser: Rodríguez, Ana Alonso, Hiptmair, Ralf, Valli, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 255
container_title IMA journal of numerical analysis
container_volume 24
creator Rodríguez, Ana Alonso
Hiptmair, Ralf
Valli, Alberto
description Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.
doi_str_mv 10.1093/imanum/24.2.255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_212924823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>585163941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKtnr4vgcdvk5RtPWtSKVREUxEvIZrOwtd2tyS60_72RLXp6h_nNDG8QOid4QrCm03ptm349BTaBCXB-gEaECZZTweAQjTBIyJmW-hidxLjEGDMh8QhdPdVbX2ZV3dSdz_zKr33TZXazCe02JXZ122Rtlfmy3GWuD-FXTVqRwHiKjiq7iv5sf8fo_e72bTbPFy_3D7PrRe6o5F3ubakkCGUrClayUjqlGKFUFCWTBS-YE4pZawvpHdMYc64IYOmJ1VhrK-kYXQy5qfi797Ezy7YPTao0QEADU0ATNB0gF9oYg6_MJqQHws4QbH4HMsNABpgBkwZKjst9rI3OrqpgG1fHfxsXmkMyjlE-cHXs_PZPt-HLCJk-NPOPT_N6w_Gzgkcj6Q_9rHWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212924823</pqid></control><display><type>article</type><title>Mixed finite element approximation of eddy current problems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</creator><creatorcontrib>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</creatorcontrib><description>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/24.2.255</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>eddy current problems ; Exact sciences and technology ; Langrange multipliers ; Mathematics ; mixed finite elements ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>IMA journal of numerical analysis, 2004-04, Vol.24 (2), p.255-271</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15695209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez, Ana Alonso</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><title>Mixed finite element approximation of eddy current problems</title><title>IMA journal of numerical analysis</title><addtitle>IMA J Numer Anal</addtitle><description>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</description><subject>eddy current problems</subject><subject>Exact sciences and technology</subject><subject>Langrange multipliers</subject><subject>Mathematics</subject><subject>mixed finite elements</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKtnr4vgcdvk5RtPWtSKVREUxEvIZrOwtd2tyS60_72RLXp6h_nNDG8QOid4QrCm03ptm349BTaBCXB-gEaECZZTweAQjTBIyJmW-hidxLjEGDMh8QhdPdVbX2ZV3dSdz_zKr33TZXazCe02JXZ122Rtlfmy3GWuD-FXTVqRwHiKjiq7iv5sf8fo_e72bTbPFy_3D7PrRe6o5F3ubakkCGUrClayUjqlGKFUFCWTBS-YE4pZawvpHdMYc64IYOmJ1VhrK-kYXQy5qfi797Ezy7YPTao0QEADU0ATNB0gF9oYg6_MJqQHws4QbH4HMsNABpgBkwZKjst9rI3OrqpgG1fHfxsXmkMyjlE-cHXs_PZPt-HLCJk-NPOPT_N6w_Gzgkcj6Q_9rHWz</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Rodríguez, Ana Alonso</creator><creator>Hiptmair, Ralf</creator><creator>Valli, Alberto</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040401</creationdate><title>Mixed finite element approximation of eddy current problems</title><author>Rodríguez, Ana Alonso ; Hiptmair, Ralf ; Valli, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ead87268af32a74d7c8841336bd47b5b4c684aaab7ec49005581207e1a9099a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>eddy current problems</topic><topic>Exact sciences and technology</topic><topic>Langrange multipliers</topic><topic>Mathematics</topic><topic>mixed finite elements</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Ana Alonso</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><creatorcontrib>Valli, Alberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Ana Alonso</au><au>Hiptmair, Ralf</au><au>Valli, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite element approximation of eddy current problems</atitle><jtitle>IMA journal of numerical analysis</jtitle><addtitle>IMA J Numer Anal</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>24</volume><issue>2</issue><spage>255</spage><epage>271</epage><pages>255-271</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/24.2.255</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2004-04, Vol.24 (2), p.255-271
issn 0272-4979
1464-3642
language eng
recordid cdi_proquest_journals_212924823
source Oxford University Press Journals All Titles (1996-Current)
subjects eddy current problems
Exact sciences and technology
Langrange multipliers
Mathematics
mixed finite elements
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Sciences and techniques of general use
title Mixed finite element approximation of eddy current problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20element%20approximation%20of%20eddy%20current%20problems&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Rodri%CC%81guez,%20Ana%20Alonso&rft.date=2004-04-01&rft.volume=24&rft.issue=2&rft.spage=255&rft.epage=271&rft.pages=255-271&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/24.2.255&rft_dat=%3Cproquest_cross%3E585163941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212924823&rft_id=info:pmid/&rfr_iscdi=true