Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon

N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2018-11, Vol.8 (6), p.1525-1530
Hauptverfasser: Morishige, Ashley E., Heinz, Friedemann D., Laine, Hannu S., Schon, Jonas, Kwapil, Wolfram, Lai, Barry, Savin, Hele, Schubert, Martin C., Buonassisi, Tonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1530
container_issue 6
container_start_page 1525
container_title IEEE journal of photovoltaics
container_volume 8
creator Morishige, Ashley E.
Heinz, Friedemann D.
Laine, Hannu S.
Schon, Jonas
Kwapil, Wolfram
Lai, Barry
Savin, Hele
Schubert, Martin C.
Buonassisi, Tonio
description N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect and precipitated transition metals has enabled advanced processing and high minority carrier lifetimes in p-type mc-Si. This contribution extends that fundamental understanding to Fe contamination in n-type mc-Si, helping enable processing of this material into an economical and high-performance photovoltaic device. By directly correlating micro-photoluminescence-based minority carrier lifetime mapping and synchrotron-based micro-X-ray fluorescence mapping of Fe-rich precipitates, we develop a quantitative, physical understanding of the recombination activity of Fe-rich precipitates in n - type mc-Si.
doi_str_mv 10.1109/JPHOTOV.2018.2869544
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2127966196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8468033</ieee_id><sourcerecordid>2127966196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ac708fa850adab39e3ed423efccf9f27998b44876c7b3440bc487d4b3247d2ac3</originalsourceid><addsrcrecordid>eNo9UU1P3DAQjaoiFQG_oD1Y5ZzFX3Gc3ugKCmjRQlm4Wo4zLkasHWxvpZX48RhlYS7z9d6bkV5V_SB4RgjuTq5uLpar5cOMYiJnVIqu4fxLtU9JI2rGMfv6UTNJvlVHKT3hEgI3QvD96vU6_Hf-H_oN2-AHNNar7Qhobeo79wvdbrTPzjoY0DXotImwBp8TChZdxuDRPPhcBkgX5sJZyG4NH8v6rzOP6CaCcaPLOkNCziM_6d-5Z2eCP6z2rH5OcLTLB9X9-dlqflEvln8u56eL2rCW5lqbFkurZYP1oHvWAYOBUwbWGNtZ2nad7DmXrTBtzzjHvSnNwHtGeTtQbdhB9XPSDSk7lYzLYB7LfQ8mK9LghoimgI4n0BjDywZSVk9hE335S1FSjghBOlFQfEKZGFKKYNUY3VrHrSJYvfuhdn6odz_Uzo9C-z7RHAB8UiQXEjPG3gAHNodF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127966196</pqid></control><display><type>article</type><title>Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon</title><source>IEEE Xplore</source><creator>Morishige, Ashley E. ; Heinz, Friedemann D. ; Laine, Hannu S. ; Schon, Jonas ; Kwapil, Wolfram ; Lai, Barry ; Savin, Hele ; Schubert, Martin C. ; Buonassisi, Tonio</creator><creatorcontrib>Morishige, Ashley E. ; Heinz, Friedemann D. ; Laine, Hannu S. ; Schon, Jonas ; Kwapil, Wolfram ; Lai, Barry ; Savin, Hele ; Schubert, Martin C. ; Buonassisi, Tonio ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect and precipitated transition metals has enabled advanced processing and high minority carrier lifetimes in p-type mc-Si. This contribution extends that fundamental understanding to Fe contamination in n-type mc-Si, helping enable processing of this material into an economical and high-performance photovoltaic device. By directly correlating micro-photoluminescence-based minority carrier lifetime mapping and synchrotron-based micro-X-ray fluorescence mapping of Fe-rich precipitates, we develop a quantitative, physical understanding of the recombination activity of Fe-rich precipitates in n - type mc-Si.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2869544</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Carrier lifetime ; Charge carrier lifetime ; Chemical precipitation ; Contamination ; Correlative microscopy ; Fluorescence ; Iron ; Mapping ; MATERIALS SCIENCE ; micro-photolumine-scence (μ-PL) ; micro-photoluminescence ; micro-X-ray fluorecence ; micro-X-ray fluorescence (μ-XRF) ; Minority carriers ; n-type ; Photoluminescence ; Photovoltaic cells ; Point defects ; precipitate ; Precipitates ; Silicon ; Solar cells ; synchrotron ; Synchrotrons ; Transition metals ; X-ray fluorescence</subject><ispartof>IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1525-1530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ac708fa850adab39e3ed423efccf9f27998b44876c7b3440bc487d4b3247d2ac3</citedby><cites>FETCH-LOGICAL-c372t-ac708fa850adab39e3ed423efccf9f27998b44876c7b3440bc487d4b3247d2ac3</cites><orcidid>0000-0001-7233-311X ; 0000-0001-8345-4937 ; 0000-0001-9352-8741 ; 0000-0001-8489-1805 ; 0000-0001-6031-0500 ; 000000017233311X ; 0000000160310500 ; 0000000183454937 ; 0000000184891805 ; 0000000193528741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8468033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8468033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1505165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Heinz, Friedemann D.</creatorcontrib><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Schon, Jonas</creatorcontrib><creatorcontrib>Kwapil, Wolfram</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Schubert, Martin C.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect and precipitated transition metals has enabled advanced processing and high minority carrier lifetimes in p-type mc-Si. This contribution extends that fundamental understanding to Fe contamination in n-type mc-Si, helping enable processing of this material into an economical and high-performance photovoltaic device. By directly correlating micro-photoluminescence-based minority carrier lifetime mapping and synchrotron-based micro-X-ray fluorescence mapping of Fe-rich precipitates, we develop a quantitative, physical understanding of the recombination activity of Fe-rich precipitates in n - type mc-Si.</description><subject>Carrier lifetime</subject><subject>Charge carrier lifetime</subject><subject>Chemical precipitation</subject><subject>Contamination</subject><subject>Correlative microscopy</subject><subject>Fluorescence</subject><subject>Iron</subject><subject>Mapping</subject><subject>MATERIALS SCIENCE</subject><subject>micro-photolumine-scence (μ-PL)</subject><subject>micro-photoluminescence</subject><subject>micro-X-ray fluorecence</subject><subject>micro-X-ray fluorescence (μ-XRF)</subject><subject>Minority carriers</subject><subject>n-type</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Point defects</subject><subject>precipitate</subject><subject>Precipitates</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>synchrotron</subject><subject>Synchrotrons</subject><subject>Transition metals</subject><subject>X-ray fluorescence</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1P3DAQjaoiFQG_oD1Y5ZzFX3Gc3ugKCmjRQlm4Wo4zLkasHWxvpZX48RhlYS7z9d6bkV5V_SB4RgjuTq5uLpar5cOMYiJnVIqu4fxLtU9JI2rGMfv6UTNJvlVHKT3hEgI3QvD96vU6_Hf-H_oN2-AHNNar7Qhobeo79wvdbrTPzjoY0DXotImwBp8TChZdxuDRPPhcBkgX5sJZyG4NH8v6rzOP6CaCcaPLOkNCziM_6d-5Z2eCP6z2rH5OcLTLB9X9-dlqflEvln8u56eL2rCW5lqbFkurZYP1oHvWAYOBUwbWGNtZ2nad7DmXrTBtzzjHvSnNwHtGeTtQbdhB9XPSDSk7lYzLYB7LfQ8mK9LghoimgI4n0BjDywZSVk9hE335S1FSjghBOlFQfEKZGFKKYNUY3VrHrSJYvfuhdn6odz_Uzo9C-z7RHAB8UiQXEjPG3gAHNodF</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Morishige, Ashley E.</creator><creator>Heinz, Friedemann D.</creator><creator>Laine, Hannu S.</creator><creator>Schon, Jonas</creator><creator>Kwapil, Wolfram</creator><creator>Lai, Barry</creator><creator>Savin, Hele</creator><creator>Schubert, Martin C.</creator><creator>Buonassisi, Tonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7233-311X</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000-0001-9352-8741</orcidid><orcidid>https://orcid.org/0000-0001-8489-1805</orcidid><orcidid>https://orcid.org/0000-0001-6031-0500</orcidid><orcidid>https://orcid.org/000000017233311X</orcidid><orcidid>https://orcid.org/0000000160310500</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid><orcidid>https://orcid.org/0000000184891805</orcidid><orcidid>https://orcid.org/0000000193528741</orcidid></search><sort><creationdate>20181101</creationdate><title>Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon</title><author>Morishige, Ashley E. ; Heinz, Friedemann D. ; Laine, Hannu S. ; Schon, Jonas ; Kwapil, Wolfram ; Lai, Barry ; Savin, Hele ; Schubert, Martin C. ; Buonassisi, Tonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ac708fa850adab39e3ed423efccf9f27998b44876c7b3440bc487d4b3247d2ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier lifetime</topic><topic>Charge carrier lifetime</topic><topic>Chemical precipitation</topic><topic>Contamination</topic><topic>Correlative microscopy</topic><topic>Fluorescence</topic><topic>Iron</topic><topic>Mapping</topic><topic>MATERIALS SCIENCE</topic><topic>micro-photolumine-scence (μ-PL)</topic><topic>micro-photoluminescence</topic><topic>micro-X-ray fluorecence</topic><topic>micro-X-ray fluorescence (μ-XRF)</topic><topic>Minority carriers</topic><topic>n-type</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Point defects</topic><topic>precipitate</topic><topic>Precipitates</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>synchrotron</topic><topic>Synchrotrons</topic><topic>Transition metals</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Heinz, Friedemann D.</creatorcontrib><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Schon, Jonas</creatorcontrib><creatorcontrib>Kwapil, Wolfram</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Schubert, Martin C.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morishige, Ashley E.</au><au>Heinz, Friedemann D.</au><au>Laine, Hannu S.</au><au>Schon, Jonas</au><au>Kwapil, Wolfram</au><au>Lai, Barry</au><au>Savin, Hele</au><au>Schubert, Martin C.</au><au>Buonassisi, Tonio</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1525</spage><epage>1530</epage><pages>1525-1530</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect and precipitated transition metals has enabled advanced processing and high minority carrier lifetimes in p-type mc-Si. This contribution extends that fundamental understanding to Fe contamination in n-type mc-Si, helping enable processing of this material into an economical and high-performance photovoltaic device. By directly correlating micro-photoluminescence-based minority carrier lifetime mapping and synchrotron-based micro-X-ray fluorescence mapping of Fe-rich precipitates, we develop a quantitative, physical understanding of the recombination activity of Fe-rich precipitates in n - type mc-Si.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2869544</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7233-311X</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000-0001-9352-8741</orcidid><orcidid>https://orcid.org/0000-0001-8489-1805</orcidid><orcidid>https://orcid.org/0000-0001-6031-0500</orcidid><orcidid>https://orcid.org/000000017233311X</orcidid><orcidid>https://orcid.org/0000000160310500</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid><orcidid>https://orcid.org/0000000184891805</orcidid><orcidid>https://orcid.org/0000000193528741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1525-1530
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_2127966196
source IEEE Xplore
subjects Carrier lifetime
Charge carrier lifetime
Chemical precipitation
Contamination
Correlative microscopy
Fluorescence
Iron
Mapping
MATERIALS SCIENCE
micro-photolumine-scence (μ-PL)
micro-photoluminescence
micro-X-ray fluorecence
micro-X-ray fluorescence (μ-XRF)
Minority carriers
n-type
Photoluminescence
Photovoltaic cells
Point defects
precipitate
Precipitates
Silicon
Solar cells
synchrotron
Synchrotrons
Transition metals
X-ray fluorescence
title Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20Beyond%20p-Type%20mc-Si:%20Quantified%20Measurements%20of%20Iron%20Content%20and%20Lifetime%20of%20Iron-Rich%20Precipitates%20in%20n-Type%20Silicon&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Morishige,%20Ashley%20E.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-11-01&rft.volume=8&rft.issue=6&rft.spage=1525&rft.epage=1530&rft.pages=1525-1530&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2869544&rft_dat=%3Cproquest_RIE%3E2127966196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127966196&rft_id=info:pmid/&rft_ieee_id=8468033&rfr_iscdi=true