Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition

High quality amorphous nanolaminates by means of alternate Al2O3 and TiO2 oxide sublayers were grown with atomic scale thickness control by pulsed laser deposition. A giant dielectric constant (>10 000), strongly enhanced compared to the value of either Al2O3 or TiO2 or their solid solution, was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-03, Vol.115 (9)
Hauptverfasser: Walke, P., Bouregba, R., Lefevre, A., Parat, G., Lallemand, F., Voiron, F., Mercey, B., Lüders, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 115
creator Walke, P.
Bouregba, R.
Lefevre, A.
Parat, G.
Lallemand, F.
Voiron, F.
Mercey, B.
Lüders, U.
description High quality amorphous nanolaminates by means of alternate Al2O3 and TiO2 oxide sublayers were grown with atomic scale thickness control by pulsed laser deposition. A giant dielectric constant (>10 000), strongly enhanced compared to the value of either Al2O3 or TiO2 or their solid solution, was observed. The dependence of the dielectric constant and the dielectric loss on the individual layer thickness of each of the constituting materials was investigated between 0.3 nm and 1 nm, in order to understand the prevailing mechanisms and allow for an optimization of the performances. An impedance study confirmed as the key source of the giant dielectric constant a Maxwell–Wagner type dielectric relaxation, caused by space charge polarization in the nanolaminate structure. The current work provides better insight of nanolaminates and their sublayer thickness engineering for potential applications.
doi_str_mv 10.1063/1.4867780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127879713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127879713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-8dff6d2bfc1f2f4559a2f122a34dfc04e270dd88a6aca5a744d4ae76022b15213</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAlYtpkzuPZJalaBUK3dR1yOQhKdNkmmSQ_nuntKsL53znXDgIvVKyoKQpl3RR8YYxTu7QjBLeFqyuyT2aEQK04C1rH9FTSgdCKOVlO0OnjZM-Y-1Mb1SOTmEVfMoXzXm8dztYrnrYldhLH3p5dF5mk_BvDH8eB491GIzGyfVuyuE0dinHicDdGQ9jnyavl8lErM0Qkssu-Gf0YOXkvNzuHP18fuzXX8V2t_ler7aFgprlgmtrGw2dVdSCreq6lWApgCwrbRWpDDCiNeeykUrWklWVrqRhDQHoaA20nKO3a-8Qw2k0KYtDGKOfXgqgwDhrGS0n6v1KqRhSisaKIbqjjGdBibgsKqi4LVr-A8yAaUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127879713</pqid></control><display><type>article</type><title>Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Walke, P. ; Bouregba, R. ; Lefevre, A. ; Parat, G. ; Lallemand, F. ; Voiron, F. ; Mercey, B. ; Lüders, U.</creator><creatorcontrib>Walke, P. ; Bouregba, R. ; Lefevre, A. ; Parat, G. ; Lallemand, F. ; Voiron, F. ; Mercey, B. ; Lüders, U.</creatorcontrib><description>High quality amorphous nanolaminates by means of alternate Al2O3 and TiO2 oxide sublayers were grown with atomic scale thickness control by pulsed laser deposition. A giant dielectric constant (&gt;10 000), strongly enhanced compared to the value of either Al2O3 or TiO2 or their solid solution, was observed. The dependence of the dielectric constant and the dielectric loss on the individual layer thickness of each of the constituting materials was investigated between 0.3 nm and 1 nm, in order to understand the prevailing mechanisms and allow for an optimization of the performances. An impedance study confirmed as the key source of the giant dielectric constant a Maxwell–Wagner type dielectric relaxation, caused by space charge polarization in the nanolaminate structure. The current work provides better insight of nanolaminates and their sublayer thickness engineering for potential applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4867780</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Applied physics ; Dependence ; Dielectric loss ; Dielectric relaxation ; Dielectric strength ; Permittivity ; Pulsed laser deposition ; Pulsed lasers ; Silicon substrates ; Solid solutions ; Space charge ; Thickness ; Titanium dioxide</subject><ispartof>Journal of applied physics, 2014-03, Vol.115 (9)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-8dff6d2bfc1f2f4559a2f122a34dfc04e270dd88a6aca5a744d4ae76022b15213</citedby><cites>FETCH-LOGICAL-c257t-8dff6d2bfc1f2f4559a2f122a34dfc04e270dd88a6aca5a744d4ae76022b15213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Walke, P.</creatorcontrib><creatorcontrib>Bouregba, R.</creatorcontrib><creatorcontrib>Lefevre, A.</creatorcontrib><creatorcontrib>Parat, G.</creatorcontrib><creatorcontrib>Lallemand, F.</creatorcontrib><creatorcontrib>Voiron, F.</creatorcontrib><creatorcontrib>Mercey, B.</creatorcontrib><creatorcontrib>Lüders, U.</creatorcontrib><title>Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition</title><title>Journal of applied physics</title><description>High quality amorphous nanolaminates by means of alternate Al2O3 and TiO2 oxide sublayers were grown with atomic scale thickness control by pulsed laser deposition. A giant dielectric constant (&gt;10 000), strongly enhanced compared to the value of either Al2O3 or TiO2 or their solid solution, was observed. The dependence of the dielectric constant and the dielectric loss on the individual layer thickness of each of the constituting materials was investigated between 0.3 nm and 1 nm, in order to understand the prevailing mechanisms and allow for an optimization of the performances. An impedance study confirmed as the key source of the giant dielectric constant a Maxwell–Wagner type dielectric relaxation, caused by space charge polarization in the nanolaminate structure. The current work provides better insight of nanolaminates and their sublayer thickness engineering for potential applications.</description><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Dependence</subject><subject>Dielectric loss</subject><subject>Dielectric relaxation</subject><subject>Dielectric strength</subject><subject>Permittivity</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Silicon substrates</subject><subject>Solid solutions</subject><subject>Space charge</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAlYtpkzuPZJalaBUK3dR1yOQhKdNkmmSQ_nuntKsL53znXDgIvVKyoKQpl3RR8YYxTu7QjBLeFqyuyT2aEQK04C1rH9FTSgdCKOVlO0OnjZM-Y-1Mb1SOTmEVfMoXzXm8dztYrnrYldhLH3p5dF5mk_BvDH8eB491GIzGyfVuyuE0dinHicDdGQ9jnyavl8lErM0Qkssu-Gf0YOXkvNzuHP18fuzXX8V2t_ler7aFgprlgmtrGw2dVdSCreq6lWApgCwrbRWpDDCiNeeykUrWklWVrqRhDQHoaA20nKO3a-8Qw2k0KYtDGKOfXgqgwDhrGS0n6v1KqRhSisaKIbqjjGdBibgsKqi4LVr-A8yAaUk</recordid><startdate>20140307</startdate><enddate>20140307</enddate><creator>Walke, P.</creator><creator>Bouregba, R.</creator><creator>Lefevre, A.</creator><creator>Parat, G.</creator><creator>Lallemand, F.</creator><creator>Voiron, F.</creator><creator>Mercey, B.</creator><creator>Lüders, U.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140307</creationdate><title>Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition</title><author>Walke, P. ; Bouregba, R. ; Lefevre, A. ; Parat, G. ; Lallemand, F. ; Voiron, F. ; Mercey, B. ; Lüders, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-8dff6d2bfc1f2f4559a2f122a34dfc04e270dd88a6aca5a744d4ae76022b15213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Dependence</topic><topic>Dielectric loss</topic><topic>Dielectric relaxation</topic><topic>Dielectric strength</topic><topic>Permittivity</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Silicon substrates</topic><topic>Solid solutions</topic><topic>Space charge</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walke, P.</creatorcontrib><creatorcontrib>Bouregba, R.</creatorcontrib><creatorcontrib>Lefevre, A.</creatorcontrib><creatorcontrib>Parat, G.</creatorcontrib><creatorcontrib>Lallemand, F.</creatorcontrib><creatorcontrib>Voiron, F.</creatorcontrib><creatorcontrib>Mercey, B.</creatorcontrib><creatorcontrib>Lüders, U.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walke, P.</au><au>Bouregba, R.</au><au>Lefevre, A.</au><au>Parat, G.</au><au>Lallemand, F.</au><au>Voiron, F.</au><au>Mercey, B.</au><au>Lüders, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition</atitle><jtitle>Journal of applied physics</jtitle><date>2014-03-07</date><risdate>2014</risdate><volume>115</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>High quality amorphous nanolaminates by means of alternate Al2O3 and TiO2 oxide sublayers were grown with atomic scale thickness control by pulsed laser deposition. A giant dielectric constant (&gt;10 000), strongly enhanced compared to the value of either Al2O3 or TiO2 or their solid solution, was observed. The dependence of the dielectric constant and the dielectric loss on the individual layer thickness of each of the constituting materials was investigated between 0.3 nm and 1 nm, in order to understand the prevailing mechanisms and allow for an optimization of the performances. An impedance study confirmed as the key source of the giant dielectric constant a Maxwell–Wagner type dielectric relaxation, caused by space charge polarization in the nanolaminate structure. The current work provides better insight of nanolaminates and their sublayer thickness engineering for potential applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4867780</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-03, Vol.115 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2127879713
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum oxide
Applied physics
Dependence
Dielectric loss
Dielectric relaxation
Dielectric strength
Permittivity
Pulsed laser deposition
Pulsed lasers
Silicon substrates
Solid solutions
Space charge
Thickness
Titanium dioxide
title Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20dielectric%20constant%20in%20TiO2/Al2O3%20nanolaminates%20grown%20on%20doped%20silicon%20substrate%20by%20pulsed%20laser%20deposition&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Walke,%20P.&rft.date=2014-03-07&rft.volume=115&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4867780&rft_dat=%3Cproquest_cross%3E2127879713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127879713&rft_id=info:pmid/&rfr_iscdi=true