Leaf image segmentation method based on multifractal detrended fluctuation analysis

To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-12, Vol.114 (21)
Hauptverfasser: Wang, Fang, Li, Jin-Wei, Shi, Wen, Liao, Gui-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 114
creator Wang, Fang
Li, Jin-Wei
Shi, Wen
Liao, Gui-Ping
description To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.
doi_str_mv 10.1063/1.4839815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127768003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127768003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8isWKRMo5jO16iipdUiQWwtvwYl1RpUmxn0b8nVbqaGc25ozuXkHsKKwqCPdFV3TDVUH5BFhQaVUrO4ZIsACpaNkqqa3KT0g6A0olbkK8NmlC0e7PFIuF2j302uR36Yo_5d_CFNQl9cZrHLrchGpdNV3jMEXs_bUI3ujzOEtOb7pjadEuugukS3p3rkvy8vnyv38vN59vH-nlTuorLXPqGSWaRS-4geMbqWgYGjbc0-Noaa5UyDpALKxQGyS2b2jpQoYRTzAi2JA_z3UMc_kZMWe-GMU4mkq5oJaVoANhEPc6Ui0NKEYM-xOnfeNQU9CkzTfU5M_YP-Dpe_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127768003</pqid></control><display><type>article</type><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</creator><creatorcontrib>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</creatorcontrib><description>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4839815</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Clustering ; Corn ; Fractals ; Image segmentation ; Variation</subject><ispartof>Journal of applied physics, 2013-12, Vol.114 (21)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</citedby><cites>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Li, Jin-Wei</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Liao, Gui-Ping</creatorcontrib><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><title>Journal of applied physics</title><description>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</description><subject>Applied physics</subject><subject>Clustering</subject><subject>Corn</subject><subject>Fractals</subject><subject>Image segmentation</subject><subject>Variation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8isWKRMo5jO16iipdUiQWwtvwYl1RpUmxn0b8nVbqaGc25ozuXkHsKKwqCPdFV3TDVUH5BFhQaVUrO4ZIsACpaNkqqa3KT0g6A0olbkK8NmlC0e7PFIuF2j302uR36Yo_5d_CFNQl9cZrHLrchGpdNV3jMEXs_bUI3ujzOEtOb7pjadEuugukS3p3rkvy8vnyv38vN59vH-nlTuorLXPqGSWaRS-4geMbqWgYGjbc0-Noaa5UyDpALKxQGyS2b2jpQoYRTzAi2JA_z3UMc_kZMWe-GMU4mkq5oJaVoANhEPc6Ui0NKEYM-xOnfeNQU9CkzTfU5M_YP-Dpe_w</recordid><startdate>20131207</startdate><enddate>20131207</enddate><creator>Wang, Fang</creator><creator>Li, Jin-Wei</creator><creator>Shi, Wen</creator><creator>Liao, Gui-Ping</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131207</creationdate><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><author>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Clustering</topic><topic>Corn</topic><topic>Fractals</topic><topic>Image segmentation</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Li, Jin-Wei</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Liao, Gui-Ping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fang</au><au>Li, Jin-Wei</au><au>Shi, Wen</au><au>Liao, Gui-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf image segmentation method based on multifractal detrended fluctuation analysis</atitle><jtitle>Journal of applied physics</jtitle><date>2013-12-07</date><risdate>2013</risdate><volume>114</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4839815</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2013-12, Vol.114 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2127768003
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied physics
Clustering
Corn
Fractals
Image segmentation
Variation
title Leaf image segmentation method based on multifractal detrended fluctuation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf%20image%20segmentation%20method%20based%20on%20multifractal%20detrended%20fluctuation%20analysis&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Fang&rft.date=2013-12-07&rft.volume=114&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4839815&rft_dat=%3Cproquest_cross%3E2127768003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127768003&rft_id=info:pmid/&rfr_iscdi=true