Leaf image segmentation method based on multifractal detrended fluctuation analysis
To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DF...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-12, Vol.114 (21) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 114 |
creator | Wang, Fang Li, Jin-Wei Shi, Wen Liao, Gui-Ping |
description | To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations. |
doi_str_mv | 10.1063/1.4839815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127768003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127768003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8isWKRMo5jO16iipdUiQWwtvwYl1RpUmxn0b8nVbqaGc25ozuXkHsKKwqCPdFV3TDVUH5BFhQaVUrO4ZIsACpaNkqqa3KT0g6A0olbkK8NmlC0e7PFIuF2j302uR36Yo_5d_CFNQl9cZrHLrchGpdNV3jMEXs_bUI3ujzOEtOb7pjadEuugukS3p3rkvy8vnyv38vN59vH-nlTuorLXPqGSWaRS-4geMbqWgYGjbc0-Noaa5UyDpALKxQGyS2b2jpQoYRTzAi2JA_z3UMc_kZMWe-GMU4mkq5oJaVoANhEPc6Ui0NKEYM-xOnfeNQU9CkzTfU5M_YP-Dpe_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127768003</pqid></control><display><type>article</type><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</creator><creatorcontrib>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</creatorcontrib><description>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4839815</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Clustering ; Corn ; Fractals ; Image segmentation ; Variation</subject><ispartof>Journal of applied physics, 2013-12, Vol.114 (21)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</citedby><cites>FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Li, Jin-Wei</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Liao, Gui-Ping</creatorcontrib><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><title>Journal of applied physics</title><description>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</description><subject>Applied physics</subject><subject>Clustering</subject><subject>Corn</subject><subject>Fractals</subject><subject>Image segmentation</subject><subject>Variation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8isWKRMo5jO16iipdUiQWwtvwYl1RpUmxn0b8nVbqaGc25ozuXkHsKKwqCPdFV3TDVUH5BFhQaVUrO4ZIsACpaNkqqa3KT0g6A0olbkK8NmlC0e7PFIuF2j302uR36Yo_5d_CFNQl9cZrHLrchGpdNV3jMEXs_bUI3ujzOEtOb7pjadEuugukS3p3rkvy8vnyv38vN59vH-nlTuorLXPqGSWaRS-4geMbqWgYGjbc0-Noaa5UyDpALKxQGyS2b2jpQoYRTzAi2JA_z3UMc_kZMWe-GMU4mkq5oJaVoANhEPc6Ui0NKEYM-xOnfeNQU9CkzTfU5M_YP-Dpe_w</recordid><startdate>20131207</startdate><enddate>20131207</enddate><creator>Wang, Fang</creator><creator>Li, Jin-Wei</creator><creator>Shi, Wen</creator><creator>Liao, Gui-Ping</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131207</creationdate><title>Leaf image segmentation method based on multifractal detrended fluctuation analysis</title><author>Wang, Fang ; Li, Jin-Wei ; Shi, Wen ; Liao, Gui-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-d8373be575c0fd33447f308db1fd4babb99ac0e56b69ef75b356b4f1696c93a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Clustering</topic><topic>Corn</topic><topic>Fractals</topic><topic>Image segmentation</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Li, Jin-Wei</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Liao, Gui-Ping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fang</au><au>Li, Jin-Wei</au><au>Shi, Wen</au><au>Liao, Gui-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf image segmentation method based on multifractal detrended fluctuation analysis</atitle><jtitle>Journal of applied physics</jtitle><date>2013-12-07</date><risdate>2013</risdate><volume>114</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>To identify singular regions of crop leaf affected by diseases, based on multifractal detrended fluctuation analysis (MF-DFA), an image segmentation method is proposed. In the proposed method, first, we defend a new texture descriptor: local generalized Hurst exponent, recorded as LHq based on MF-DFA. And then, box-counting dimension f(LHq) is calculated for sub-images constituted by the LHq of some pixels, which come from a specific region. Consequently, series of f(LHq) of the different regions can be obtained. Finally, the singular regions are segmented according to the corresponding f(LHq). Six kinds of corn diseases leaf's images are tested in our experiments. Both the proposed method and other two segmentation methods—multifractal spectrum based and fuzzy C-means clustering have been compared in the experiments. The comparison results demonstrate that the proposed method can recognize the lesion regions more effectively and provide more robust segmentations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4839815</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2013-12, Vol.114 (21) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2127768003 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied physics Clustering Corn Fractals Image segmentation Variation |
title | Leaf image segmentation method based on multifractal detrended fluctuation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf%20image%20segmentation%20method%20based%20on%20multifractal%20detrended%20fluctuation%20analysis&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Fang&rft.date=2013-12-07&rft.volume=114&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4839815&rft_dat=%3Cproquest_cross%3E2127768003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127768003&rft_id=info:pmid/&rfr_iscdi=true |