Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites
Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-06, Vol.113 (24) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 113 |
creator | Childs, Nicholas B. Weisenstein, Adam Smith, Richard Sofie, Stephen Key, Camas |
description | Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was used to fabricate materials and crystal structure was verified through x-ray diffraction. Subsequent to conventional sintering in a reducing environment, elemental valence states were indentified through x-ray photoemission spectroscopy on the double perovskite material before and after annealing in a hydrogen environment. Samples exhibited metallic like conduction with electrical conductivities of 1250 S/cm (Sr2VMoO6-y′), 2530 S/cm (Sr1.8VMoO6-y″), and 3610 S/cm (Sr1.9VMoO6-y‴) at 800 °C in 5% H2/95% N2, with a substantial increase in conductivity upon cooling to room temperature. Room temperature electrical conductivity values for Sr1.9VMoO6-y‴ make it a candidate as the highest electrically conductive oxide known. Highly insulating secondary surface phases, Sr3V2O8, and SrMoO4, begin to reduce at 400 °C in a hydrogen environment, as confirmed by X-ray photoemission and thermal gravimetric analysis. This reduction, from V5+ and Mo6+ to lower valence states, leads to a large increase in sample electrical conductivity. |
doi_str_mv | 10.1063/1.4811715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127710272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127710272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-91fd0369c34d800254fa1eabda1ca2ae983e6abee85e90ba05637f6123787eee3</originalsourceid><addsrcrecordid>eNotkD9PwzAQxS0EEqUw8A0isVCJlDu7ie2BAVXlj1TUAegaOc5FSil1sZOq3Rhh5SP2k5CqHe7dG366d3qMXSL0EVJxi_2BQpSYHLEOgtKxTBI4Zh0AjrHSUp-ysxBmAIhK6A6bjuZka19ZM4-sWxSNratVVW8iV0avnm9__tbTFzdJW7OJrtfb79-7dqAPN1GbuBPeiwrX5HOKluTdKnxUNYVzdlKaeaCLw-6y94fR2_ApHk8en4f349jyRNaxxrIAkWorBoVqX0wGpUEyeWHQGm5IK0GpyYlUQhpyA0kqZJkiF1JJIhJddrW_u_Tuq6FQZzPX-EUbmXHkUiJwyVuqt6esdyF4KrOlrz6N32QI2a62DLNDbeIfJkVftQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127710272</pqid></control><display><type>article</type><title>Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Childs, Nicholas B. ; Weisenstein, Adam ; Smith, Richard ; Sofie, Stephen ; Key, Camas</creator><creatorcontrib>Childs, Nicholas B. ; Weisenstein, Adam ; Smith, Richard ; Sofie, Stephen ; Key, Camas</creatorcontrib><description>Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was used to fabricate materials and crystal structure was verified through x-ray diffraction. Subsequent to conventional sintering in a reducing environment, elemental valence states were indentified through x-ray photoemission spectroscopy on the double perovskite material before and after annealing in a hydrogen environment. Samples exhibited metallic like conduction with electrical conductivities of 1250 S/cm (Sr2VMoO6-y′), 2530 S/cm (Sr1.8VMoO6-y″), and 3610 S/cm (Sr1.9VMoO6-y‴) at 800 °C in 5% H2/95% N2, with a substantial increase in conductivity upon cooling to room temperature. Room temperature electrical conductivity values for Sr1.9VMoO6-y‴ make it a candidate as the highest electrically conductive oxide known. Highly insulating secondary surface phases, Sr3V2O8, and SrMoO4, begin to reduce at 400 °C in a hydrogen environment, as confirmed by X-ray photoemission and thermal gravimetric analysis. This reduction, from V5+ and Mo6+ to lower valence states, leads to a large increase in sample electrical conductivity.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4811715</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cell anodes ; Chemical synthesis ; Conductivity ; Conductors ; Crystal structure ; Electrical resistivity ; Gravimetric analysis ; Perovskites ; Photoelectric emission ; Solid oxide fuel cells ; X ray spectra ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2013-06, Vol.113 (24)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-91fd0369c34d800254fa1eabda1ca2ae983e6abee85e90ba05637f6123787eee3</citedby><cites>FETCH-LOGICAL-c257t-91fd0369c34d800254fa1eabda1ca2ae983e6abee85e90ba05637f6123787eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Childs, Nicholas B.</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Smith, Richard</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><creatorcontrib>Key, Camas</creatorcontrib><title>Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites</title><title>Journal of applied physics</title><description>Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was used to fabricate materials and crystal structure was verified through x-ray diffraction. Subsequent to conventional sintering in a reducing environment, elemental valence states were indentified through x-ray photoemission spectroscopy on the double perovskite material before and after annealing in a hydrogen environment. Samples exhibited metallic like conduction with electrical conductivities of 1250 S/cm (Sr2VMoO6-y′), 2530 S/cm (Sr1.8VMoO6-y″), and 3610 S/cm (Sr1.9VMoO6-y‴) at 800 °C in 5% H2/95% N2, with a substantial increase in conductivity upon cooling to room temperature. Room temperature electrical conductivity values for Sr1.9VMoO6-y‴ make it a candidate as the highest electrically conductive oxide known. Highly insulating secondary surface phases, Sr3V2O8, and SrMoO4, begin to reduce at 400 °C in a hydrogen environment, as confirmed by X-ray photoemission and thermal gravimetric analysis. This reduction, from V5+ and Mo6+ to lower valence states, leads to a large increase in sample electrical conductivity.</description><subject>Applied physics</subject><subject>Cell anodes</subject><subject>Chemical synthesis</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Crystal structure</subject><subject>Electrical resistivity</subject><subject>Gravimetric analysis</subject><subject>Perovskites</subject><subject>Photoelectric emission</subject><subject>Solid oxide fuel cells</subject><subject>X ray spectra</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD9PwzAQxS0EEqUw8A0isVCJlDu7ie2BAVXlj1TUAegaOc5FSil1sZOq3Rhh5SP2k5CqHe7dG366d3qMXSL0EVJxi_2BQpSYHLEOgtKxTBI4Zh0AjrHSUp-ysxBmAIhK6A6bjuZka19ZM4-sWxSNratVVW8iV0avnm9__tbTFzdJW7OJrtfb79-7dqAPN1GbuBPeiwrX5HOKluTdKnxUNYVzdlKaeaCLw-6y94fR2_ApHk8en4f349jyRNaxxrIAkWorBoVqX0wGpUEyeWHQGm5IK0GpyYlUQhpyA0kqZJkiF1JJIhJddrW_u_Tuq6FQZzPX-EUbmXHkUiJwyVuqt6esdyF4KrOlrz6N32QI2a62DLNDbeIfJkVftQ</recordid><startdate>20130628</startdate><enddate>20130628</enddate><creator>Childs, Nicholas B.</creator><creator>Weisenstein, Adam</creator><creator>Smith, Richard</creator><creator>Sofie, Stephen</creator><creator>Key, Camas</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130628</creationdate><title>Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites</title><author>Childs, Nicholas B. ; Weisenstein, Adam ; Smith, Richard ; Sofie, Stephen ; Key, Camas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-91fd0369c34d800254fa1eabda1ca2ae983e6abee85e90ba05637f6123787eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Cell anodes</topic><topic>Chemical synthesis</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Crystal structure</topic><topic>Electrical resistivity</topic><topic>Gravimetric analysis</topic><topic>Perovskites</topic><topic>Photoelectric emission</topic><topic>Solid oxide fuel cells</topic><topic>X ray spectra</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childs, Nicholas B.</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Smith, Richard</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><creatorcontrib>Key, Camas</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childs, Nicholas B.</au><au>Weisenstein, Adam</au><au>Smith, Richard</au><au>Sofie, Stephen</au><au>Key, Camas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites</atitle><jtitle>Journal of applied physics</jtitle><date>2013-06-28</date><risdate>2013</risdate><volume>113</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was used to fabricate materials and crystal structure was verified through x-ray diffraction. Subsequent to conventional sintering in a reducing environment, elemental valence states were indentified through x-ray photoemission spectroscopy on the double perovskite material before and after annealing in a hydrogen environment. Samples exhibited metallic like conduction with electrical conductivities of 1250 S/cm (Sr2VMoO6-y′), 2530 S/cm (Sr1.8VMoO6-y″), and 3610 S/cm (Sr1.9VMoO6-y‴) at 800 °C in 5% H2/95% N2, with a substantial increase in conductivity upon cooling to room temperature. Room temperature electrical conductivity values for Sr1.9VMoO6-y‴ make it a candidate as the highest electrically conductive oxide known. Highly insulating secondary surface phases, Sr3V2O8, and SrMoO4, begin to reduce at 400 °C in a hydrogen environment, as confirmed by X-ray photoemission and thermal gravimetric analysis. This reduction, from V5+ and Mo6+ to lower valence states, leads to a large increase in sample electrical conductivity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4811715</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2013-06, Vol.113 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2127710272 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied physics Cell anodes Chemical synthesis Conductivity Conductors Crystal structure Electrical resistivity Gravimetric analysis Perovskites Photoelectric emission Solid oxide fuel cells X ray spectra X-ray diffraction |
title | Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20of%20Sr2%E2%88%92xVMoO6%E2%88%92y%20(x%E2%80%89=%E2%80%890.0,%200.1,%200.2)%20double%20perovskites&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Childs,%20Nicholas%20B.&rft.date=2013-06-28&rft.volume=113&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4811715&rft_dat=%3Cproquest_cross%3E2127710272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127710272&rft_id=info:pmid/&rfr_iscdi=true |