Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode

The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-03, Vol.115 (11)
Hauptverfasser: Khalid, Ata, Dunn, G. M., Macpherson, R. F., Thoms, S., Macintyre, D., Li, C., Steer, M. J., Papageorgiou, V., Thayne, I. G., Kuball, M., Oxley, C. H., Montes Bajo, M., Stephen, A., Glover, J., Cumming, D. R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 115
creator Khalid, Ata
Dunn, G. M.
Macpherson, R. F.
Thoms, S.
Macintyre, D.
Li, C.
Steer, M. J.
Papageorgiou, V.
Thayne, I. G.
Kuball, M.
Oxley, C. H.
Montes Bajo, M.
Stephen, A.
Glover, J.
Cumming, D. R. S.
description The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5 μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5 μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600 nm and 700 nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In0.53Ga0.47As on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 μW was obtained from a 600 nm long × 120 μm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible—the Monte Carlo model used predicts power output at frequencies over 300 GHz.
doi_str_mv 10.1063/1.4868705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127689793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127689793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b5d3f3139dcf65b6294b61c6e46dc293682c49245f0f31cdc7e6d4c909c9928b3</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqUw8AaWmBgSfl9jj1UFaaVKLGW2HNsRqVKn2MkAT0-qdjrLp3ND6JlASUCyN1JyJVUF4gYtCChdVELALVoAUFIoXel79JDzAYAQxfQC1fuQ7HdI4x8esuv63o7dEDPuIrYRbyOUgtUWSl6tMs5Tc-xcGiI-9TbahOspRuy7wYdHdNfaPoenqy7R18f7fr0pdp_1dr3aFY4JNRaN8KxlhGnvWikaSTVvJHEycOkd1Uwq6rimXLQwY867KkjPnQbttKaqYUv0cvE9peFnCnk0h2FKcY40lNBKnieymXq9UHPZnFNozSl1R5t-DQFz_skQc_2J_QO16ley</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127689793</pqid></control><display><type>article</type><title>Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Khalid, Ata ; Dunn, G. M. ; Macpherson, R. F. ; Thoms, S. ; Macintyre, D. ; Li, C. ; Steer, M. J. ; Papageorgiou, V. ; Thayne, I. G. ; Kuball, M. ; Oxley, C. H. ; Montes Bajo, M. ; Stephen, A. ; Glover, J. ; Cumming, D. R. S.</creator><creatorcontrib>Khalid, Ata ; Dunn, G. M. ; Macpherson, R. F. ; Thoms, S. ; Macintyre, D. ; Li, C. ; Steer, M. J. ; Papageorgiou, V. ; Thayne, I. G. ; Kuball, M. ; Oxley, C. H. ; Montes Bajo, M. ; Stephen, A. ; Glover, J. ; Cumming, D. R. S.</creatorcontrib><description>The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5 μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5 μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600 nm and 700 nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In0.53Ga0.47As on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 μW was obtained from a 600 nm long × 120 μm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible—the Monte Carlo model used predicts power output at frequencies over 300 GHz.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4868705</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Electron phonon interactions ; Gunn diodes ; Lower bounds ; Resonant frequencies ; Substrates ; Transportation planning</subject><ispartof>Journal of applied physics, 2014-03, Vol.115 (11)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b5d3f3139dcf65b6294b61c6e46dc293682c49245f0f31cdc7e6d4c909c9928b3</citedby><cites>FETCH-LOGICAL-c358t-b5d3f3139dcf65b6294b61c6e46dc293682c49245f0f31cdc7e6d4c909c9928b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khalid, Ata</creatorcontrib><creatorcontrib>Dunn, G. M.</creatorcontrib><creatorcontrib>Macpherson, R. F.</creatorcontrib><creatorcontrib>Thoms, S.</creatorcontrib><creatorcontrib>Macintyre, D.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Steer, M. J.</creatorcontrib><creatorcontrib>Papageorgiou, V.</creatorcontrib><creatorcontrib>Thayne, I. G.</creatorcontrib><creatorcontrib>Kuball, M.</creatorcontrib><creatorcontrib>Oxley, C. H.</creatorcontrib><creatorcontrib>Montes Bajo, M.</creatorcontrib><creatorcontrib>Stephen, A.</creatorcontrib><creatorcontrib>Glover, J.</creatorcontrib><creatorcontrib>Cumming, D. R. S.</creatorcontrib><title>Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode</title><title>Journal of applied physics</title><description>The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5 μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5 μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600 nm and 700 nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In0.53Ga0.47As on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 μW was obtained from a 600 nm long × 120 μm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible—the Monte Carlo model used predicts power output at frequencies over 300 GHz.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Electron phonon interactions</subject><subject>Gunn diodes</subject><subject>Lower bounds</subject><subject>Resonant frequencies</subject><subject>Substrates</subject><subject>Transportation planning</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqUw8AaWmBgSfl9jj1UFaaVKLGW2HNsRqVKn2MkAT0-qdjrLp3ND6JlASUCyN1JyJVUF4gYtCChdVELALVoAUFIoXel79JDzAYAQxfQC1fuQ7HdI4x8esuv63o7dEDPuIrYRbyOUgtUWSl6tMs5Tc-xcGiI-9TbahOspRuy7wYdHdNfaPoenqy7R18f7fr0pdp_1dr3aFY4JNRaN8KxlhGnvWikaSTVvJHEycOkd1Uwq6rimXLQwY867KkjPnQbttKaqYUv0cvE9peFnCnk0h2FKcY40lNBKnieymXq9UHPZnFNozSl1R5t-DQFz_skQc_2J_QO16ley</recordid><startdate>20140321</startdate><enddate>20140321</enddate><creator>Khalid, Ata</creator><creator>Dunn, G. M.</creator><creator>Macpherson, R. F.</creator><creator>Thoms, S.</creator><creator>Macintyre, D.</creator><creator>Li, C.</creator><creator>Steer, M. J.</creator><creator>Papageorgiou, V.</creator><creator>Thayne, I. G.</creator><creator>Kuball, M.</creator><creator>Oxley, C. H.</creator><creator>Montes Bajo, M.</creator><creator>Stephen, A.</creator><creator>Glover, J.</creator><creator>Cumming, D. R. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140321</creationdate><title>Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode</title><author>Khalid, Ata ; Dunn, G. M. ; Macpherson, R. F. ; Thoms, S. ; Macintyre, D. ; Li, C. ; Steer, M. J. ; Papageorgiou, V. ; Thayne, I. G. ; Kuball, M. ; Oxley, C. H. ; Montes Bajo, M. ; Stephen, A. ; Glover, J. ; Cumming, D. R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b5d3f3139dcf65b6294b61c6e46dc293682c49245f0f31cdc7e6d4c909c9928b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Electron phonon interactions</topic><topic>Gunn diodes</topic><topic>Lower bounds</topic><topic>Resonant frequencies</topic><topic>Substrates</topic><topic>Transportation planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Ata</creatorcontrib><creatorcontrib>Dunn, G. M.</creatorcontrib><creatorcontrib>Macpherson, R. F.</creatorcontrib><creatorcontrib>Thoms, S.</creatorcontrib><creatorcontrib>Macintyre, D.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Steer, M. J.</creatorcontrib><creatorcontrib>Papageorgiou, V.</creatorcontrib><creatorcontrib>Thayne, I. G.</creatorcontrib><creatorcontrib>Kuball, M.</creatorcontrib><creatorcontrib>Oxley, C. H.</creatorcontrib><creatorcontrib>Montes Bajo, M.</creatorcontrib><creatorcontrib>Stephen, A.</creatorcontrib><creatorcontrib>Glover, J.</creatorcontrib><creatorcontrib>Cumming, D. R. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalid, Ata</au><au>Dunn, G. M.</au><au>Macpherson, R. F.</au><au>Thoms, S.</au><au>Macintyre, D.</au><au>Li, C.</au><au>Steer, M. J.</au><au>Papageorgiou, V.</au><au>Thayne, I. G.</au><au>Kuball, M.</au><au>Oxley, C. H.</au><au>Montes Bajo, M.</au><au>Stephen, A.</au><au>Glover, J.</au><au>Cumming, D. R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode</atitle><jtitle>Journal of applied physics</jtitle><date>2014-03-21</date><risdate>2014</risdate><volume>115</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode—the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5 μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5 μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600 nm and 700 nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In0.53Ga0.47As on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 μW was obtained from a 600 nm long × 120 μm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible—the Monte Carlo model used predicts power output at frequencies over 300 GHz.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4868705</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-03, Vol.115 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2127689793
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Computer simulation
Electron phonon interactions
Gunn diodes
Lower bounds
Resonant frequencies
Substrates
Transportation planning
title Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20oscillations%20in%20an%20In0.53Ga0.47As%20submicron%20planar%20Gunn%20diode&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Khalid,%20Ata&rft.date=2014-03-21&rft.volume=115&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4868705&rft_dat=%3Cproquest_cross%3E2127689793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127689793&rft_id=info:pmid/&rfr_iscdi=true