Multi-zone non-thermal radiative model for stellar bowshocks

Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2018-09, Vol.617, p.A13
Hauptverfasser: del Palacio, S., Bosch-Ramon, V., Müller, A. L., Romero, G. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A13
container_title Astronomy and astrophysics (Berlin)
container_volume 617
creator del Palacio, S.
Bosch-Ramon, V.
Müller, A. L.
Romero, G. E.
description Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer.
doi_str_mv 10.1051/0004-6361/201833321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127653597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127653597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-ae2f68e9d7f8b287b9554ddc1626b2e8e9020f5957db3ad4e4f6c269cc57deeb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wMuC59h8bJJd8CL1s7ToQRG8hOxmQrfdbmqy9evXm1LpKUzmeWeYB6FzSi4pEXRECMmx5JKOGKEF55zRAzSgOWeYqFweosGeOEYnMS5SyRI4QFezTds3-Nd3kHW-w_0cwsq0WTC2MX3zCdnKW2gz50MWe2hbE7LKf8W5r5fxFB0500Y4-3-H6PXu9mX8gKdP94_j6ymuuSQ9NsCcLKC0yhUVK1RVCpFbW1PJZMUgdQgjTpRC2Yobm0PuZM1kWdfpB6DiQ3Sxm7sO_mMDsdcLvwldWqkZZUoKLkqVKL6j6uBjDOD0OjQrE340JXqrSW8l6K0EvdeUUniXatJ53_uICUstFVdCF-RN3zzPJmLC3vWU_wFVfGlf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127653597</pqid></control><display><type>article</type><title>Multi-zone non-thermal radiative model for stellar bowshocks</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>del Palacio, S. ; Bosch-Ramon, V. ; Müller, A. L. ; Romero, G. E.</creator><creatorcontrib>del Palacio, S. ; Bosch-Ramon, V. ; Müller, A. L. ; Romero, G. E.</creatorcontrib><description>Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201833321</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>acceleration of particles ; Broadband ; Constraint modelling ; Energy ; Magnetic fields ; Morphology ; Multizone models ; outflows ; radiation mechanisms: non-thermal ; Radio emission ; Relativistic particles ; stars: massive ; stars: winds ; Stellar winds ; Thermal radiation ; Wavelengths ; X ray spectra</subject><ispartof>Astronomy and astrophysics (Berlin), 2018-09, Vol.617, p.A13</ispartof><rights>Copyright EDP Sciences Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-ae2f68e9d7f8b287b9554ddc1626b2e8e9020f5957db3ad4e4f6c269cc57deeb3</citedby><cites>FETCH-LOGICAL-c360t-ae2f68e9d7f8b287b9554ddc1626b2e8e9020f5957db3ad4e4f6c269cc57deeb3</cites><orcidid>0000-0002-5761-2417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3714,27905,27906</link.rule.ids></links><search><creatorcontrib>del Palacio, S.</creatorcontrib><creatorcontrib>Bosch-Ramon, V.</creatorcontrib><creatorcontrib>Müller, A. L.</creatorcontrib><creatorcontrib>Romero, G. E.</creatorcontrib><title>Multi-zone non-thermal radiative model for stellar bowshocks</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer.</description><subject>acceleration of particles</subject><subject>Broadband</subject><subject>Constraint modelling</subject><subject>Energy</subject><subject>Magnetic fields</subject><subject>Morphology</subject><subject>Multizone models</subject><subject>outflows</subject><subject>radiation mechanisms: non-thermal</subject><subject>Radio emission</subject><subject>Relativistic particles</subject><subject>stars: massive</subject><subject>stars: winds</subject><subject>Stellar winds</subject><subject>Thermal radiation</subject><subject>Wavelengths</subject><subject>X ray spectra</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKu_wMuC59h8bJJd8CL1s7ToQRG8hOxmQrfdbmqy9evXm1LpKUzmeWeYB6FzSi4pEXRECMmx5JKOGKEF55zRAzSgOWeYqFweosGeOEYnMS5SyRI4QFezTds3-Nd3kHW-w_0cwsq0WTC2MX3zCdnKW2gz50MWe2hbE7LKf8W5r5fxFB0500Y4-3-H6PXu9mX8gKdP94_j6ymuuSQ9NsCcLKC0yhUVK1RVCpFbW1PJZMUgdQgjTpRC2Yobm0PuZM1kWdfpB6DiQ3Sxm7sO_mMDsdcLvwldWqkZZUoKLkqVKL6j6uBjDOD0OjQrE340JXqrSW8l6K0EvdeUUniXatJ53_uICUstFVdCF-RN3zzPJmLC3vWU_wFVfGlf</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>del Palacio, S.</creator><creator>Bosch-Ramon, V.</creator><creator>Müller, A. L.</creator><creator>Romero, G. E.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5761-2417</orcidid></search><sort><creationdate>20180901</creationdate><title>Multi-zone non-thermal radiative model for stellar bowshocks</title><author>del Palacio, S. ; Bosch-Ramon, V. ; Müller, A. L. ; Romero, G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-ae2f68e9d7f8b287b9554ddc1626b2e8e9020f5957db3ad4e4f6c269cc57deeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acceleration of particles</topic><topic>Broadband</topic><topic>Constraint modelling</topic><topic>Energy</topic><topic>Magnetic fields</topic><topic>Morphology</topic><topic>Multizone models</topic><topic>outflows</topic><topic>radiation mechanisms: non-thermal</topic><topic>Radio emission</topic><topic>Relativistic particles</topic><topic>stars: massive</topic><topic>stars: winds</topic><topic>Stellar winds</topic><topic>Thermal radiation</topic><topic>Wavelengths</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del Palacio, S.</creatorcontrib><creatorcontrib>Bosch-Ramon, V.</creatorcontrib><creatorcontrib>Müller, A. L.</creatorcontrib><creatorcontrib>Romero, G. E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Palacio, S.</au><au>Bosch-Ramon, V.</au><au>Müller, A. L.</au><au>Romero, G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-zone non-thermal radiative model for stellar bowshocks</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>617</volume><spage>A13</spage><pages>A13-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201833321</doi><orcidid>https://orcid.org/0000-0002-5761-2417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2018-09, Vol.617, p.A13
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2127653597
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects acceleration of particles
Broadband
Constraint modelling
Energy
Magnetic fields
Morphology
Multizone models
outflows
radiation mechanisms: non-thermal
Radio emission
Relativistic particles
stars: massive
stars: winds
Stellar winds
Thermal radiation
Wavelengths
X ray spectra
title Multi-zone non-thermal radiative model for stellar bowshocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-zone%20non-thermal%20radiative%20model%20for%20stellar%20bowshocks&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=del%20Palacio,%20S.&rft.date=2018-09-01&rft.volume=617&rft.spage=A13&rft.pages=A13-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201833321&rft_dat=%3Cproquest_cross%3E2127653597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127653597&rft_id=info:pmid/&rfr_iscdi=true