Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films

In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2018-12, Vol.47 (12), p.7069-7074
Hauptverfasser: Mahmoodi, Saman, Moradi, Mehrdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7074
container_issue 12
container_start_page 7069
container_title Journal of electronic materials
container_volume 47
creator Mahmoodi, Saman
Moradi, Mehrdad
description In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.
doi_str_mv 10.1007/s11664-018-6634-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127625713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127625713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgsMRv8_C_JWFUtIAodKBIDkuU4TpuSJsV2B749roLExPLuhrvT0w-ha6C3QGl2FwCUEoRCTpTigqgTNAIpOIFcvZ-iEeUKiGRcnqOLELaUgoQcRuhjanzZd_jFdH08lA5PQmhCdBWedRvTWbdzXcR9jePG4Wez7lzsyXIfG2ta_OS8x6_Nuku-SRuN_XQtXm2SnzftLlyis9q0wV396hi9zWer6QNZLO8fp5MFsRxUJIaxoqosN1xVpXAmrySvLROykulQZgy3orBlLmlNC2utKfJMMMFpXedSFHyMbobdve-_Di5Eve0PPn0VNAOWKSYz4CkFQ8r6PgTvar33zc74bw1UHyHqAaJOEPURolapw4ZOSNlu7fzf8v-lH2Wbc_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127625713</pqid></control><display><type>article</type><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><source>SpringerLink Journals</source><creator>Mahmoodi, Saman ; Moradi, Mehrdad</creator><creatorcontrib>Mahmoodi, Saman ; Moradi, Mehrdad</creatorcontrib><description>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6634-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplification ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron spin ; Electronics and Microelectronics ; Energy dispersive X ray spectroscopy ; Field emission microscopy ; Glass substrates ; Instrumentation ; Magnetic properties ; Materials Science ; Morphology ; Nickel ; Optical and Electronic Materials ; Optical communication ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Spin coating ; Thin films ; X ray spectra</subject><ispartof>Journal of electronic materials, 2018-12, Vol.47 (12), p.7069-7074</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</citedby><cites>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</cites><orcidid>0000-0003-3971-840X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6634-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6634-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mahmoodi, Saman</creatorcontrib><creatorcontrib>Moradi, Mehrdad</creatorcontrib><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</description><subject>Amplification</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron spin</subject><subject>Electronics and Microelectronics</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Field emission microscopy</subject><subject>Glass substrates</subject><subject>Instrumentation</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Optical communication</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>X ray spectra</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD9PwzAUxC0EEqXwAdgsMRv8_C_JWFUtIAodKBIDkuU4TpuSJsV2B749roLExPLuhrvT0w-ha6C3QGl2FwCUEoRCTpTigqgTNAIpOIFcvZ-iEeUKiGRcnqOLELaUgoQcRuhjanzZd_jFdH08lA5PQmhCdBWedRvTWbdzXcR9jePG4Wez7lzsyXIfG2ta_OS8x6_Nuku-SRuN_XQtXm2SnzftLlyis9q0wV396hi9zWer6QNZLO8fp5MFsRxUJIaxoqosN1xVpXAmrySvLROykulQZgy3orBlLmlNC2utKfJMMMFpXedSFHyMbobdve-_Di5Eve0PPn0VNAOWKSYz4CkFQ8r6PgTvar33zc74bw1UHyHqAaJOEPURolapw4ZOSNlu7fzf8v-lH2Wbc_c</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Mahmoodi, Saman</creator><creator>Moradi, Mehrdad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3971-840X</orcidid></search><sort><creationdate>20181201</creationdate><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><author>Mahmoodi, Saman ; Moradi, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron spin</topic><topic>Electronics and Microelectronics</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Field emission microscopy</topic><topic>Glass substrates</topic><topic>Instrumentation</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Optical communication</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoodi, Saman</creatorcontrib><creatorcontrib>Moradi, Mehrdad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoodi, Saman</au><au>Moradi, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>7069</spage><epage>7074</epage><pages>7069-7074</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6634-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3971-840X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018-12, Vol.47 (12), p.7069-7074
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2127625713
source SpringerLink Journals
subjects Amplification
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electron spin
Electronics and Microelectronics
Energy dispersive X ray spectroscopy
Field emission microscopy
Glass substrates
Instrumentation
Magnetic properties
Materials Science
Morphology
Nickel
Optical and Electronic Materials
Optical communication
Scanning electron microscopy
Solid State Physics
Spectrum analysis
Spin coating
Thin films
X ray spectra
title Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Assisted%20Enhancement%20of%20the%20Magneto-Optical%20Kerr%20Signal%20in%20Nickel%20Thin%20Films&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mahmoodi,%20Saman&rft.date=2018-12-01&rft.volume=47&rft.issue=12&rft.spage=7069&rft.epage=7074&rft.pages=7069-7074&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6634-6&rft_dat=%3Cproquest_cross%3E2127625713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127625713&rft_id=info:pmid/&rfr_iscdi=true