Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films
In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was em...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2018-12, Vol.47 (12), p.7069-7074 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7074 |
---|---|
container_issue | 12 |
container_start_page | 7069 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Mahmoodi, Saman Moradi, Mehrdad |
description | In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors. |
doi_str_mv | 10.1007/s11664-018-6634-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127625713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127625713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgsMRv8_C_JWFUtIAodKBIDkuU4TpuSJsV2B749roLExPLuhrvT0w-ha6C3QGl2FwCUEoRCTpTigqgTNAIpOIFcvZ-iEeUKiGRcnqOLELaUgoQcRuhjanzZd_jFdH08lA5PQmhCdBWedRvTWbdzXcR9jePG4Wez7lzsyXIfG2ta_OS8x6_Nuku-SRuN_XQtXm2SnzftLlyis9q0wV396hi9zWer6QNZLO8fp5MFsRxUJIaxoqosN1xVpXAmrySvLROykulQZgy3orBlLmlNC2utKfJMMMFpXedSFHyMbobdve-_Di5Eve0PPn0VNAOWKSYz4CkFQ8r6PgTvar33zc74bw1UHyHqAaJOEPURolapw4ZOSNlu7fzf8v-lH2Wbc_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127625713</pqid></control><display><type>article</type><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><source>SpringerLink Journals</source><creator>Mahmoodi, Saman ; Moradi, Mehrdad</creator><creatorcontrib>Mahmoodi, Saman ; Moradi, Mehrdad</creatorcontrib><description>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6634-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplification ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron spin ; Electronics and Microelectronics ; Energy dispersive X ray spectroscopy ; Field emission microscopy ; Glass substrates ; Instrumentation ; Magnetic properties ; Materials Science ; Morphology ; Nickel ; Optical and Electronic Materials ; Optical communication ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Spin coating ; Thin films ; X ray spectra</subject><ispartof>Journal of electronic materials, 2018-12, Vol.47 (12), p.7069-7074</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</citedby><cites>FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</cites><orcidid>0000-0003-3971-840X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6634-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6634-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mahmoodi, Saman</creatorcontrib><creatorcontrib>Moradi, Mehrdad</creatorcontrib><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</description><subject>Amplification</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron spin</subject><subject>Electronics and Microelectronics</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Field emission microscopy</subject><subject>Glass substrates</subject><subject>Instrumentation</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Optical communication</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>X ray spectra</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD9PwzAUxC0EEqXwAdgsMRv8_C_JWFUtIAodKBIDkuU4TpuSJsV2B749roLExPLuhrvT0w-ha6C3QGl2FwCUEoRCTpTigqgTNAIpOIFcvZ-iEeUKiGRcnqOLELaUgoQcRuhjanzZd_jFdH08lA5PQmhCdBWedRvTWbdzXcR9jePG4Wez7lzsyXIfG2ta_OS8x6_Nuku-SRuN_XQtXm2SnzftLlyis9q0wV396hi9zWer6QNZLO8fp5MFsRxUJIaxoqosN1xVpXAmrySvLROykulQZgy3orBlLmlNC2utKfJMMMFpXedSFHyMbobdve-_Di5Eve0PPn0VNAOWKSYz4CkFQ8r6PgTvar33zc74bw1UHyHqAaJOEPURolapw4ZOSNlu7fzf8v-lH2Wbc_c</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Mahmoodi, Saman</creator><creator>Moradi, Mehrdad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3971-840X</orcidid></search><sort><creationdate>20181201</creationdate><title>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</title><author>Mahmoodi, Saman ; Moradi, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a229ddc3a36db4ea8d53fc245d524502aa3c49cb850f09ccca98742430ff85493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron spin</topic><topic>Electronics and Microelectronics</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Field emission microscopy</topic><topic>Glass substrates</topic><topic>Instrumentation</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Optical communication</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoodi, Saman</creatorcontrib><creatorcontrib>Moradi, Mehrdad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoodi, Saman</au><au>Moradi, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>7069</spage><epage>7074</epage><pages>7069-7074</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6634-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3971-840X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-12, Vol.47 (12), p.7069-7074 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2127625713 |
source | SpringerLink Journals |
subjects | Amplification Carbon nanotubes Characterization and Evaluation of Materials Chemistry and Materials Science Electron spin Electronics and Microelectronics Energy dispersive X ray spectroscopy Field emission microscopy Glass substrates Instrumentation Magnetic properties Materials Science Morphology Nickel Optical and Electronic Materials Optical communication Scanning electron microscopy Solid State Physics Spectrum analysis Spin coating Thin films X ray spectra |
title | Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Assisted%20Enhancement%20of%20the%20Magneto-Optical%20Kerr%20Signal%20in%20Nickel%20Thin%20Films&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mahmoodi,%20Saman&rft.date=2018-12-01&rft.volume=47&rft.issue=12&rft.spage=7069&rft.epage=7074&rft.pages=7069-7074&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6634-6&rft_dat=%3Cproquest_cross%3E2127625713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127625713&rft_id=info:pmid/&rfr_iscdi=true |