Study of seepage field distribution and its influence on urban tunnels in water-rich regions
This paper presents a study of the spatial distribution of pore water pressure on urban tunnels in water-rich regions. Based on Harr’s classical solution for unlined tunnels and the actual hydrological environment, a water pressure formula of the seepage field is derived by regarding the surrounding...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2019-09, Vol.78 (6), p.4035-4045 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4045 |
---|---|
container_issue | 6 |
container_start_page | 4035 |
container_title | Bulletin of engineering geology and the environment |
container_volume | 78 |
creator | Li, Zheng He, Chuan Chen, Ziquan Yang, Saizhou Ding, Jianjun Pen, Yi |
description | This paper presents a study of the spatial distribution of pore water pressure on urban tunnels in water-rich regions. Based on Harr’s classical solution for unlined tunnels and the actual hydrological environment, a water pressure formula of the seepage field is derived by regarding the surrounding rock, grouting circle, lining, etc., as a complete system. The seepage model test system developed is applied to test the distribution of water pressure in the surrounding rock for an unlined tunnel and a tunnel that contains both a grouting circle and a lining. For the unlined tunnel, the degree of coincidence between the theoretical and experimental results is higher at a distance from the tunnel center than near the center of tunnel. For the tunnel with the grouting circle and lining, the theoretical solution tallies with the experimental results. The decrease in the permeability coefficient of the grouting circle or the degradation of lining permeability will cause the water pressure in the surrounding rock to rise, with the latter effect being more significant. However, the effect of changing the grouting radius on the tunnel seepage field is not obvious. |
doi_str_mv | 10.1007/s10064-018-1417-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127591826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127591826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c80376a6010b1aee4dbc5f1ea37c315dd43eb1db28584f68cebf0095e30f3c63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM0vTjKItfsOBBvQkhTSZrlpquSYr47-1S0ZOXmWHmed-Bl5BzYJfAWH2VplqVBYOmgBLqgh2QBZRCFq0U9eHvzNtjcpLSljGQDYcFeX3Ko_2ig6MJcac3SJ3H3lLrU46-G7MfAtXBUp8T9cH1IwaDdFqOsdOB5jEE7Pcn-qkzxiJ680YjbiZdOiVHTvcJz376krzc3jyv7ov1493D6npdGAFVLrhpmKgrXTFgHWjE0nZGOkAt6omQ1pYCO7Adb2RTuqox2DnGWomCOWEqsSQXs-8uDh8jpqy2wxjD9FJx4LVsoeF7CmbKxCGliE7ton_X8UsBU_sQ1RyimkJU-xAVmzR81qSJDRuMf87_i74Bs911TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127591826</pqid></control><display><type>article</type><title>Study of seepage field distribution and its influence on urban tunnels in water-rich regions</title><source>SpringerNature Journals</source><creator>Li, Zheng ; He, Chuan ; Chen, Ziquan ; Yang, Saizhou ; Ding, Jianjun ; Pen, Yi</creator><creatorcontrib>Li, Zheng ; He, Chuan ; Chen, Ziquan ; Yang, Saizhou ; Ding, Jianjun ; Pen, Yi</creatorcontrib><description>This paper presents a study of the spatial distribution of pore water pressure on urban tunnels in water-rich regions. Based on Harr’s classical solution for unlined tunnels and the actual hydrological environment, a water pressure formula of the seepage field is derived by regarding the surrounding rock, grouting circle, lining, etc., as a complete system. The seepage model test system developed is applied to test the distribution of water pressure in the surrounding rock for an unlined tunnel and a tunnel that contains both a grouting circle and a lining. For the unlined tunnel, the degree of coincidence between the theoretical and experimental results is higher at a distance from the tunnel center than near the center of tunnel. For the tunnel with the grouting circle and lining, the theoretical solution tallies with the experimental results. The decrease in the permeability coefficient of the grouting circle or the degradation of lining permeability will cause the water pressure in the surrounding rock to rise, with the latter effect being more significant. However, the effect of changing the grouting radius on the tunnel seepage field is not obvious.</description><identifier>ISSN: 1435-9529</identifier><identifier>EISSN: 1435-9537</identifier><identifier>DOI: 10.1007/s10064-018-1417-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Distribution ; Earth and Environmental Science ; Earth Sciences ; Foundations ; Geoecology/Natural Processes ; Geoengineering ; Geological engineering ; Geotechnical Engineering & Applied Earth Sciences ; Grouting ; Hydraulics ; Hydrology ; Hydrostatic pressure ; Model testing ; Nature Conservation ; Original Paper ; Permeability ; Permeability coefficient ; Pore pressure ; Pore water ; Pore water pressure ; Regions ; Rocks ; Seepage ; Spatial distribution ; Stress concentration ; Tunnels ; Water pressure</subject><ispartof>Bulletin of engineering geology and the environment, 2019-09, Vol.78 (6), p.4035-4045</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Bulletin of Engineering Geology and the Environment is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c80376a6010b1aee4dbc5f1ea37c315dd43eb1db28584f68cebf0095e30f3c63</citedby><cites>FETCH-LOGICAL-c316t-2c80376a6010b1aee4dbc5f1ea37c315dd43eb1db28584f68cebf0095e30f3c63</cites><orcidid>0000-0002-8652-7561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10064-018-1417-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10064-018-1417-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><creatorcontrib>Yang, Saizhou</creatorcontrib><creatorcontrib>Ding, Jianjun</creatorcontrib><creatorcontrib>Pen, Yi</creatorcontrib><title>Study of seepage field distribution and its influence on urban tunnels in water-rich regions</title><title>Bulletin of engineering geology and the environment</title><addtitle>Bull Eng Geol Environ</addtitle><description>This paper presents a study of the spatial distribution of pore water pressure on urban tunnels in water-rich regions. Based on Harr’s classical solution for unlined tunnels and the actual hydrological environment, a water pressure formula of the seepage field is derived by regarding the surrounding rock, grouting circle, lining, etc., as a complete system. The seepage model test system developed is applied to test the distribution of water pressure in the surrounding rock for an unlined tunnel and a tunnel that contains both a grouting circle and a lining. For the unlined tunnel, the degree of coincidence between the theoretical and experimental results is higher at a distance from the tunnel center than near the center of tunnel. For the tunnel with the grouting circle and lining, the theoretical solution tallies with the experimental results. The decrease in the permeability coefficient of the grouting circle or the degradation of lining permeability will cause the water pressure in the surrounding rock to rise, with the latter effect being more significant. However, the effect of changing the grouting radius on the tunnel seepage field is not obvious.</description><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Foundations</subject><subject>Geoecology/Natural Processes</subject><subject>Geoengineering</subject><subject>Geological engineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Grouting</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Hydrostatic pressure</subject><subject>Model testing</subject><subject>Nature Conservation</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Permeability coefficient</subject><subject>Pore pressure</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>Regions</subject><subject>Rocks</subject><subject>Seepage</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Tunnels</subject><subject>Water pressure</subject><issn>1435-9529</issn><issn>1435-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM0vTjKItfsOBBvQkhTSZrlpquSYr47-1S0ZOXmWHmed-Bl5BzYJfAWH2VplqVBYOmgBLqgh2QBZRCFq0U9eHvzNtjcpLSljGQDYcFeX3Ko_2ig6MJcac3SJ3H3lLrU46-G7MfAtXBUp8T9cH1IwaDdFqOsdOB5jEE7Pcn-qkzxiJ680YjbiZdOiVHTvcJz376krzc3jyv7ov1493D6npdGAFVLrhpmKgrXTFgHWjE0nZGOkAt6omQ1pYCO7Adb2RTuqox2DnGWomCOWEqsSQXs-8uDh8jpqy2wxjD9FJx4LVsoeF7CmbKxCGliE7ton_X8UsBU_sQ1RyimkJU-xAVmzR81qSJDRuMf87_i74Bs911TQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, Zheng</creator><creator>He, Chuan</creator><creator>Chen, Ziquan</creator><creator>Yang, Saizhou</creator><creator>Ding, Jianjun</creator><creator>Pen, Yi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8652-7561</orcidid></search><sort><creationdate>20190901</creationdate><title>Study of seepage field distribution and its influence on urban tunnels in water-rich regions</title><author>Li, Zheng ; He, Chuan ; Chen, Ziquan ; Yang, Saizhou ; Ding, Jianjun ; Pen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c80376a6010b1aee4dbc5f1ea37c315dd43eb1db28584f68cebf0095e30f3c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Foundations</topic><topic>Geoecology/Natural Processes</topic><topic>Geoengineering</topic><topic>Geological engineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Grouting</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Hydrostatic pressure</topic><topic>Model testing</topic><topic>Nature Conservation</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Permeability coefficient</topic><topic>Pore pressure</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>Regions</topic><topic>Rocks</topic><topic>Seepage</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Tunnels</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><creatorcontrib>Yang, Saizhou</creatorcontrib><creatorcontrib>Ding, Jianjun</creatorcontrib><creatorcontrib>Pen, Yi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of engineering geology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng</au><au>He, Chuan</au><au>Chen, Ziquan</au><au>Yang, Saizhou</au><au>Ding, Jianjun</au><au>Pen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of seepage field distribution and its influence on urban tunnels in water-rich regions</atitle><jtitle>Bulletin of engineering geology and the environment</jtitle><stitle>Bull Eng Geol Environ</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>4035</spage><epage>4045</epage><pages>4035-4045</pages><issn>1435-9529</issn><eissn>1435-9537</eissn><abstract>This paper presents a study of the spatial distribution of pore water pressure on urban tunnels in water-rich regions. Based on Harr’s classical solution for unlined tunnels and the actual hydrological environment, a water pressure formula of the seepage field is derived by regarding the surrounding rock, grouting circle, lining, etc., as a complete system. The seepage model test system developed is applied to test the distribution of water pressure in the surrounding rock for an unlined tunnel and a tunnel that contains both a grouting circle and a lining. For the unlined tunnel, the degree of coincidence between the theoretical and experimental results is higher at a distance from the tunnel center than near the center of tunnel. For the tunnel with the grouting circle and lining, the theoretical solution tallies with the experimental results. The decrease in the permeability coefficient of the grouting circle or the degradation of lining permeability will cause the water pressure in the surrounding rock to rise, with the latter effect being more significant. However, the effect of changing the grouting radius on the tunnel seepage field is not obvious.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10064-018-1417-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8652-7561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9529 |
ispartof | Bulletin of engineering geology and the environment, 2019-09, Vol.78 (6), p.4035-4045 |
issn | 1435-9529 1435-9537 |
language | eng |
recordid | cdi_proquest_journals_2127591826 |
source | SpringerNature Journals |
subjects | Distribution Earth and Environmental Science Earth Sciences Foundations Geoecology/Natural Processes Geoengineering Geological engineering Geotechnical Engineering & Applied Earth Sciences Grouting Hydraulics Hydrology Hydrostatic pressure Model testing Nature Conservation Original Paper Permeability Permeability coefficient Pore pressure Pore water Pore water pressure Regions Rocks Seepage Spatial distribution Stress concentration Tunnels Water pressure |
title | Study of seepage field distribution and its influence on urban tunnels in water-rich regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20seepage%20field%20distribution%20and%20its%20influence%20on%20urban%20tunnels%20in%20water-rich%20regions&rft.jtitle=Bulletin%20of%20engineering%20geology%20and%20the%20environment&rft.au=Li,%20Zheng&rft.date=2019-09-01&rft.volume=78&rft.issue=6&rft.spage=4035&rft.epage=4045&rft.pages=4035-4045&rft.issn=1435-9529&rft.eissn=1435-9537&rft_id=info:doi/10.1007/s10064-018-1417-0&rft_dat=%3Cproquest_cross%3E2127591826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127591826&rft_id=info:pmid/&rfr_iscdi=true |