A two‐stage forecasting approach for short‐term intermodal freight prediction

The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2019-03, Vol.26 (2), p.642-666
Hauptverfasser: Moscoso‐López, José Antonio, Turias, Ignacio, Jiménez‐Come, Maria Jesús, Ruiz‐Aguilar, Juan Jesús, Cerbán, María del Mar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 2
container_start_page 642
container_title International transactions in operational research
container_volume 26
creator Moscoso‐López, José Antonio
Turias, Ignacio
Jiménez‐Come, Maria Jesús
Ruiz‐Aguilar, Juan Jesús
Cerbán, María del Mar
description The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.
doi_str_mv 10.1111/itor.12337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127570196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127570196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1J9fOshQvhUJR6jqkmUyb0k7GJKV05yP4jD6JM45rz-aHw3cufAjdAh5BWw8u-TACQqk8QwNgkue0KPg5GuBCFLnAIC7RVYxbjDFwkAP0OsnS0X9_fsWk1zarfLBGx-TqdaabJnhtNl0zixsfUoslG_aZq7vwpd5lVbBuvUlZE2zpTHK-vkYXld5Fe_OXQ_T-9LicvuTzxfNsOpnnhmKQOSdkTAloAUIKWUK1ktgawVkhJWFVUbISJKGGjRnlGkpDVuMKBFtxTSjGlg7RXb-3_fLjYGNSW38IdXtSESCSSwyFaKn7njLBxxhspZrg9jqcFGDVKVOdMvWrrIWhh49uZ0__kGq2XLz1Mz_qJG_z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127570196</pqid></control><display><type>article</type><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</creator><creatorcontrib>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</creatorcontrib><description>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12337</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; ensemble Bayesian regularization ; Forecasting ; freight time series ; Freight transportation ; Intermodal ; Intermodal transportation ; neural network forecasting ; Neural networks ; Operations research ; Regularization ; Ro‐Ro freight ; Ro‐Ro transport ; Supply chains ; Weight</subject><ispartof>International transactions in operational research, 2019-03, Vol.26 (2), p.642-666</ispartof><rights>2016 The Authors. International Transactions in Operational Research © 2016 International Federation of Operational Research Societies</rights><rights>2019 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</citedby><cites>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Moscoso‐López, José Antonio</creatorcontrib><creatorcontrib>Turias, Ignacio</creatorcontrib><creatorcontrib>Jiménez‐Come, Maria Jesús</creatorcontrib><creatorcontrib>Ruiz‐Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Cerbán, María del Mar</creatorcontrib><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><title>International transactions in operational research</title><description>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</description><subject>Bayesian analysis</subject><subject>ensemble Bayesian regularization</subject><subject>Forecasting</subject><subject>freight time series</subject><subject>Freight transportation</subject><subject>Intermodal</subject><subject>Intermodal transportation</subject><subject>neural network forecasting</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Regularization</subject><subject>Ro‐Ro freight</subject><subject>Ro‐Ro transport</subject><subject>Supply chains</subject><subject>Weight</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1J9fOshQvhUJR6jqkmUyb0k7GJKV05yP4jD6JM45rz-aHw3cufAjdAh5BWw8u-TACQqk8QwNgkue0KPg5GuBCFLnAIC7RVYxbjDFwkAP0OsnS0X9_fsWk1zarfLBGx-TqdaabJnhtNl0zixsfUoslG_aZq7vwpd5lVbBuvUlZE2zpTHK-vkYXld5Fe_OXQ_T-9LicvuTzxfNsOpnnhmKQOSdkTAloAUIKWUK1ktgawVkhJWFVUbISJKGGjRnlGkpDVuMKBFtxTSjGlg7RXb-3_fLjYGNSW38IdXtSESCSSwyFaKn7njLBxxhspZrg9jqcFGDVKVOdMvWrrIWhh49uZ0__kGq2XLz1Mz_qJG_z</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Moscoso‐López, José Antonio</creator><creator>Turias, Ignacio</creator><creator>Jiménez‐Come, Maria Jesús</creator><creator>Ruiz‐Aguilar, Juan Jesús</creator><creator>Cerbán, María del Mar</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201903</creationdate><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><author>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>ensemble Bayesian regularization</topic><topic>Forecasting</topic><topic>freight time series</topic><topic>Freight transportation</topic><topic>Intermodal</topic><topic>Intermodal transportation</topic><topic>neural network forecasting</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Regularization</topic><topic>Ro‐Ro freight</topic><topic>Ro‐Ro transport</topic><topic>Supply chains</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moscoso‐López, José Antonio</creatorcontrib><creatorcontrib>Turias, Ignacio</creatorcontrib><creatorcontrib>Jiménez‐Come, Maria Jesús</creatorcontrib><creatorcontrib>Ruiz‐Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Cerbán, María del Mar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moscoso‐López, José Antonio</au><au>Turias, Ignacio</au><au>Jiménez‐Come, Maria Jesús</au><au>Ruiz‐Aguilar, Juan Jesús</au><au>Cerbán, María del Mar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two‐stage forecasting approach for short‐term intermodal freight prediction</atitle><jtitle>International transactions in operational research</jtitle><date>2019-03</date><risdate>2019</risdate><volume>26</volume><issue>2</issue><spage>642</spage><epage>666</epage><pages>642-666</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12337</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2019-03, Vol.26 (2), p.642-666
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_2127570196
source Wiley Journals; EBSCOhost Business Source Complete
subjects Bayesian analysis
ensemble Bayesian regularization
Forecasting
freight time series
Freight transportation
Intermodal
Intermodal transportation
neural network forecasting
Neural networks
Operations research
Regularization
Ro‐Ro freight
Ro‐Ro transport
Supply chains
Weight
title A two‐stage forecasting approach for short‐term intermodal freight prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two%E2%80%90stage%20forecasting%20approach%20for%20short%E2%80%90term%20intermodal%20freight%20prediction&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Moscoso%E2%80%90L%C3%B3pez,%20Jos%C3%A9%20Antonio&rft.date=2019-03&rft.volume=26&rft.issue=2&rft.spage=642&rft.epage=666&rft.pages=642-666&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12337&rft_dat=%3Cproquest_cross%3E2127570196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127570196&rft_id=info:pmid/&rfr_iscdi=true