A two‐stage forecasting approach for short‐term intermodal freight prediction
The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides informa...
Gespeichert in:
Veröffentlicht in: | International transactions in operational research 2019-03, Vol.26 (2), p.642-666 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | 2 |
container_start_page | 642 |
container_title | International transactions in operational research |
container_volume | 26 |
creator | Moscoso‐López, José Antonio Turias, Ignacio Jiménez‐Come, Maria Jesús Ruiz‐Aguilar, Juan Jesús Cerbán, María del Mar |
description | The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport. |
doi_str_mv | 10.1111/itor.12337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127570196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127570196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1J9fOshQvhUJR6jqkmUyb0k7GJKV05yP4jD6JM45rz-aHw3cufAjdAh5BWw8u-TACQqk8QwNgkue0KPg5GuBCFLnAIC7RVYxbjDFwkAP0OsnS0X9_fsWk1zarfLBGx-TqdaabJnhtNl0zixsfUoslG_aZq7vwpd5lVbBuvUlZE2zpTHK-vkYXld5Fe_OXQ_T-9LicvuTzxfNsOpnnhmKQOSdkTAloAUIKWUK1ktgawVkhJWFVUbISJKGGjRnlGkpDVuMKBFtxTSjGlg7RXb-3_fLjYGNSW38IdXtSESCSSwyFaKn7njLBxxhspZrg9jqcFGDVKVOdMvWrrIWhh49uZ0__kGq2XLz1Mz_qJG_z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127570196</pqid></control><display><type>article</type><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</creator><creatorcontrib>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</creatorcontrib><description>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12337</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; ensemble Bayesian regularization ; Forecasting ; freight time series ; Freight transportation ; Intermodal ; Intermodal transportation ; neural network forecasting ; Neural networks ; Operations research ; Regularization ; Ro‐Ro freight ; Ro‐Ro transport ; Supply chains ; Weight</subject><ispartof>International transactions in operational research, 2019-03, Vol.26 (2), p.642-666</ispartof><rights>2016 The Authors. International Transactions in Operational Research © 2016 International Federation of Operational Research Societies</rights><rights>2019 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</citedby><cites>FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Moscoso‐López, José Antonio</creatorcontrib><creatorcontrib>Turias, Ignacio</creatorcontrib><creatorcontrib>Jiménez‐Come, Maria Jesús</creatorcontrib><creatorcontrib>Ruiz‐Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Cerbán, María del Mar</creatorcontrib><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><title>International transactions in operational research</title><description>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</description><subject>Bayesian analysis</subject><subject>ensemble Bayesian regularization</subject><subject>Forecasting</subject><subject>freight time series</subject><subject>Freight transportation</subject><subject>Intermodal</subject><subject>Intermodal transportation</subject><subject>neural network forecasting</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Regularization</subject><subject>Ro‐Ro freight</subject><subject>Ro‐Ro transport</subject><subject>Supply chains</subject><subject>Weight</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1J9fOshQvhUJR6jqkmUyb0k7GJKV05yP4jD6JM45rz-aHw3cufAjdAh5BWw8u-TACQqk8QwNgkue0KPg5GuBCFLnAIC7RVYxbjDFwkAP0OsnS0X9_fsWk1zarfLBGx-TqdaabJnhtNl0zixsfUoslG_aZq7vwpd5lVbBuvUlZE2zpTHK-vkYXld5Fe_OXQ_T-9LicvuTzxfNsOpnnhmKQOSdkTAloAUIKWUK1ktgawVkhJWFVUbISJKGGjRnlGkpDVuMKBFtxTSjGlg7RXb-3_fLjYGNSW38IdXtSESCSSwyFaKn7njLBxxhspZrg9jqcFGDVKVOdMvWrrIWhh49uZ0__kGq2XLz1Mz_qJG_z</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Moscoso‐López, José Antonio</creator><creator>Turias, Ignacio</creator><creator>Jiménez‐Come, Maria Jesús</creator><creator>Ruiz‐Aguilar, Juan Jesús</creator><creator>Cerbán, María del Mar</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201903</creationdate><title>A two‐stage forecasting approach for short‐term intermodal freight prediction</title><author>Moscoso‐López, José Antonio ; Turias, Ignacio ; Jiménez‐Come, Maria Jesús ; Ruiz‐Aguilar, Juan Jesús ; Cerbán, María del Mar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-5228321a616767d1fb70ec65497724f9d4d1723c48435a1dc2b8f164b5a2300e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>ensemble Bayesian regularization</topic><topic>Forecasting</topic><topic>freight time series</topic><topic>Freight transportation</topic><topic>Intermodal</topic><topic>Intermodal transportation</topic><topic>neural network forecasting</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Regularization</topic><topic>Ro‐Ro freight</topic><topic>Ro‐Ro transport</topic><topic>Supply chains</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moscoso‐López, José Antonio</creatorcontrib><creatorcontrib>Turias, Ignacio</creatorcontrib><creatorcontrib>Jiménez‐Come, Maria Jesús</creatorcontrib><creatorcontrib>Ruiz‐Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Cerbán, María del Mar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moscoso‐López, José Antonio</au><au>Turias, Ignacio</au><au>Jiménez‐Come, Maria Jesús</au><au>Ruiz‐Aguilar, Juan Jesús</au><au>Cerbán, María del Mar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two‐stage forecasting approach for short‐term intermodal freight prediction</atitle><jtitle>International transactions in operational research</jtitle><date>2019-03</date><risdate>2019</risdate><volume>26</volume><issue>2</issue><spage>642</spage><epage>666</epage><pages>642-666</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>The forecasting of the freight transportation, especially the short‐term case, is an important topic in the daily supply chain management. Intermodal freight transportation is subject to multiple complex calendar effects arising in the port environment. The use of prediction methods provides information that may be helpful as a decision‐making tool in the management and planning of operations processes in ports. This work addresses the forecasting problem on a daily basis by a novel two‐stage scheme combination to offer reliable predictions of fresh freight weight on Ro‐Ro (roll‐on/roll‐off) transport for 7 and 14 days ahead. The study compares daily forecasting with a weekly forecasting approach. The applies database preprocessing and Bayesian regularization neural networks (BRNN) in Stage I. In Stage II, an ensemble framework of the best BRNN models is used to enhance the Stage I forecasting. The results show that the models assessed are a promising tool to predict freight time series for Ro‐Ro transport.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12337</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6016 |
ispartof | International transactions in operational research, 2019-03, Vol.26 (2), p.642-666 |
issn | 0969-6016 1475-3995 |
language | eng |
recordid | cdi_proquest_journals_2127570196 |
source | Wiley Journals; EBSCOhost Business Source Complete |
subjects | Bayesian analysis ensemble Bayesian regularization Forecasting freight time series Freight transportation Intermodal Intermodal transportation neural network forecasting Neural networks Operations research Regularization Ro‐Ro freight Ro‐Ro transport Supply chains Weight |
title | A two‐stage forecasting approach for short‐term intermodal freight prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two%E2%80%90stage%20forecasting%20approach%20for%20short%E2%80%90term%20intermodal%20freight%20prediction&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Moscoso%E2%80%90L%C3%B3pez,%20Jos%C3%A9%20Antonio&rft.date=2019-03&rft.volume=26&rft.issue=2&rft.spage=642&rft.epage=666&rft.pages=642-666&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12337&rft_dat=%3Cproquest_cross%3E2127570196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127570196&rft_id=info:pmid/&rfr_iscdi=true |