Evaluating Text GANs as Language Models

Generative Adversarial Networks (GANs) are a promising approach for text generation that, unlike traditional language models (LM), does not suffer from the problem of ``exposure bias''. However, A major hurdle for understanding the potential of GANs for text generation is the lack of a cle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-03
Hauptverfasser: Tevet, Guy, Habib, Gavriel, Shwartz, Vered, Berant, Jonathan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!