Exact solutions to nonlinear symmetron theory: One- and two-mirror systems

We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-03, Vol.97 (6), Article 064015
Hauptverfasser: Brax, Philippe, Pitschmann, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 97
creator Brax, Philippe
Pitschmann, Mario
description We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.
doi_str_mv 10.1103/PhysRevD.97.064015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127425807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127425807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOOb-gFcBrzvfN22T1juZ84vBRPQ6pG3COtZkJqnaf2_H1KtzLh7OgYeQS4Q5IqTXL5shvOrPu3kp5sAzwPyETFgmIAFg5el_RzgnsxC2MFYOpUCckOflt6ojDW7Xx9bZQKOj1tlda7XyNAxdp6N3lsaNdn64oWurE6psQ-OXS7rWe3egQtRduCBnRu2Cnv3mlLzfL98Wj8lq_fC0uF0ldYplTFBVkHHepEynvFBNYVheNKoWWAHLscwzNAY5Kg61KCqTZVVjKqxTU9bIRZFOydVxd-_dR69DlFvXezteSoZMZOMciJFiR6r2LgSvjdz7tlN-kAjyoE3-aZOlkEdt6Q_RF2IB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127425807</pqid></control><display><type>article</type><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><source>American Physical Society Journals</source><creator>Brax, Philippe ; Pitschmann, Mario</creator><creatorcontrib>Brax, Philippe ; Pitschmann, Mario</creatorcontrib><description>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.064015</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Elliptic functions ; Equations of motion ; Field theory ; Mathematical analysis ; Mirrors</subject><ispartof>Physical review. D, 2018-03, Vol.97 (6), Article 064015</ispartof><rights>Copyright American Physical Society Mar 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</citedby><cites>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids></links><search><creatorcontrib>Brax, Philippe</creatorcontrib><creatorcontrib>Pitschmann, Mario</creatorcontrib><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><title>Physical review. D</title><description>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</description><subject>Elliptic functions</subject><subject>Equations of motion</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Mirrors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOOb-gFcBrzvfN22T1juZ84vBRPQ6pG3COtZkJqnaf2_H1KtzLh7OgYeQS4Q5IqTXL5shvOrPu3kp5sAzwPyETFgmIAFg5el_RzgnsxC2MFYOpUCckOflt6ojDW7Xx9bZQKOj1tlda7XyNAxdp6N3lsaNdn64oWurE6psQ-OXS7rWe3egQtRduCBnRu2Cnv3mlLzfL98Wj8lq_fC0uF0ldYplTFBVkHHepEynvFBNYVheNKoWWAHLscwzNAY5Kg61KCqTZVVjKqxTU9bIRZFOydVxd-_dR69DlFvXezteSoZMZOMciJFiR6r2LgSvjdz7tlN-kAjyoE3-aZOlkEdt6Q_RF2IB</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Brax, Philippe</creator><creator>Pitschmann, Mario</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180315</creationdate><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><author>Brax, Philippe ; Pitschmann, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Elliptic functions</topic><topic>Equations of motion</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Mirrors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brax, Philippe</creatorcontrib><creatorcontrib>Pitschmann, Mario</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brax, Philippe</au><au>Pitschmann, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</atitle><jtitle>Physical review. D</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>97</volume><issue>6</issue><artnum>064015</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.064015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-03, Vol.97 (6), Article 064015
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2127425807
source American Physical Society Journals
subjects Elliptic functions
Equations of motion
Field theory
Mathematical analysis
Mirrors
title Exact solutions to nonlinear symmetron theory: One- and two-mirror systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20to%20nonlinear%20symmetron%20theory:%20One-%20and%20two-mirror%20systems&rft.jtitle=Physical%20review.%20D&rft.au=Brax,%20Philippe&rft.date=2018-03-15&rft.volume=97&rft.issue=6&rft.artnum=064015&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.064015&rft_dat=%3Cproquest_cross%3E2127425807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127425807&rft_id=info:pmid/&rfr_iscdi=true