Exact solutions to nonlinear symmetron theory: One- and two-mirror systems
We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, i...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-03, Vol.97 (6), Article 064015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 97 |
creator | Brax, Philippe Pitschmann, Mario |
description | We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment. |
doi_str_mv | 10.1103/PhysRevD.97.064015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127425807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127425807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOOb-gFcBrzvfN22T1juZ84vBRPQ6pG3COtZkJqnaf2_H1KtzLh7OgYeQS4Q5IqTXL5shvOrPu3kp5sAzwPyETFgmIAFg5el_RzgnsxC2MFYOpUCckOflt6ojDW7Xx9bZQKOj1tlda7XyNAxdp6N3lsaNdn64oWurE6psQ-OXS7rWe3egQtRduCBnRu2Cnv3mlLzfL98Wj8lq_fC0uF0ldYplTFBVkHHepEynvFBNYVheNKoWWAHLscwzNAY5Kg61KCqTZVVjKqxTU9bIRZFOydVxd-_dR69DlFvXezteSoZMZOMciJFiR6r2LgSvjdz7tlN-kAjyoE3-aZOlkEdt6Q_RF2IB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127425807</pqid></control><display><type>article</type><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><source>American Physical Society Journals</source><creator>Brax, Philippe ; Pitschmann, Mario</creator><creatorcontrib>Brax, Philippe ; Pitschmann, Mario</creatorcontrib><description>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.064015</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Elliptic functions ; Equations of motion ; Field theory ; Mathematical analysis ; Mirrors</subject><ispartof>Physical review. D, 2018-03, Vol.97 (6), Article 064015</ispartof><rights>Copyright American Physical Society Mar 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</citedby><cites>FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids></links><search><creatorcontrib>Brax, Philippe</creatorcontrib><creatorcontrib>Pitschmann, Mario</creatorcontrib><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><title>Physical review. D</title><description>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</description><subject>Elliptic functions</subject><subject>Equations of motion</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Mirrors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOOb-gFcBrzvfN22T1juZ84vBRPQ6pG3COtZkJqnaf2_H1KtzLh7OgYeQS4Q5IqTXL5shvOrPu3kp5sAzwPyETFgmIAFg5el_RzgnsxC2MFYOpUCckOflt6ojDW7Xx9bZQKOj1tlda7XyNAxdp6N3lsaNdn64oWurE6psQ-OXS7rWe3egQtRduCBnRu2Cnv3mlLzfL98Wj8lq_fC0uF0ldYplTFBVkHHepEynvFBNYVheNKoWWAHLscwzNAY5Kg61KCqTZVVjKqxTU9bIRZFOydVxd-_dR69DlFvXezteSoZMZOMciJFiR6r2LgSvjdz7tlN-kAjyoE3-aZOlkEdt6Q_RF2IB</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Brax, Philippe</creator><creator>Pitschmann, Mario</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180315</creationdate><title>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</title><author>Brax, Philippe ; Pitschmann, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ab0466d32e368ad8f258dac71b02519541ff161a60c78bf44bdfb1c3f9c16783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Elliptic functions</topic><topic>Equations of motion</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Mirrors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brax, Philippe</creatorcontrib><creatorcontrib>Pitschmann, Mario</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brax, Philippe</au><au>Pitschmann, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions to nonlinear symmetron theory: One- and two-mirror systems</atitle><jtitle>Physical review. D</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>97</volume><issue>6</issue><artnum>064015</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to qBOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir force” in the CANNEX experiment.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.064015</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-03, Vol.97 (6), Article 064015 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2127425807 |
source | American Physical Society Journals |
subjects | Elliptic functions Equations of motion Field theory Mathematical analysis Mirrors |
title | Exact solutions to nonlinear symmetron theory: One- and two-mirror systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20to%20nonlinear%20symmetron%20theory:%20One-%20and%20two-mirror%20systems&rft.jtitle=Physical%20review.%20D&rft.au=Brax,%20Philippe&rft.date=2018-03-15&rft.volume=97&rft.issue=6&rft.artnum=064015&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.064015&rft_dat=%3Cproquest_cross%3E2127425807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127425807&rft_id=info:pmid/&rfr_iscdi=true |