Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling

•A three-dimensional thermal model for HCPV/T system was developed.•Four distinct designs of jet impingement heat sinks were evaluated and compared.•Single jet impingement design achieved the best performance of the HCPV/T system. The high solar light concentration onto the photovoltaic cell leads t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2018-11, Vol.176, p.39-54
Hauptverfasser: Abo-Zahhad, Essam M., Ookawara, Shinichi, Radwan, Ali, El-Shazly, A.H., ElKady, M.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 39
container_title Energy conversion and management
container_volume 176
creator Abo-Zahhad, Essam M.
Ookawara, Shinichi
Radwan, Ali
El-Shazly, A.H.
ElKady, M.F.
description •A three-dimensional thermal model for HCPV/T system was developed.•Four distinct designs of jet impingement heat sinks were evaluated and compared.•Single jet impingement design achieved the best performance of the HCPV/T system. The high solar light concentration onto the photovoltaic cell leads to extremely high cell temperature, which significantly decreases the cell efficiency and degrades its lifetime due to the thermal stresses. One of the main challenges of these types of solar cells is to propose an efficient cooling technique that allows the cells to operate under its recommended operating conditions. Therefore, the focus of this study was to develop a comprehensive three-dimensional model for the high concentrator photovoltaic/thermal (HCPV/T) system. This model comprises a thermal model for a triple-junction solar cell integrated with a thermo-fluid model for four distinct designs of confined jet impingement heat sinks. The results showed that the cell electrical efficiency increased with the coolant flow rate, and sufficient temperature uniformity can be achieved by the jet impingement configurations. Additionally, the use of jet impingement configurations consumed a slight pumping power less than 1% of the generated power in the solar cell. The maximum local temperature of uncooled solar cell was predicted to reach 1360 °C under solar concentration ratio of 1000 Suns. Under the same conditions, the single jet design reduced the maximum local temperature to about 65 °C with coolant mass flow rate of 50 g/min. It should be noted that the thermal stress substantially decreased with the increasing coolant mass flow rate. Exergetic analysis showed that the single jet design attained the maximum total exergy efficiency of 53.25% at the flow rate of 25 g/min.
doi_str_mv 10.1016/j.enconman.2018.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127425570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418310008</els_id><sourcerecordid>2127425570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3b673afaeb39964b272010491ad1933e4f864f6e2cb358343302bae0c6e6c7883</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoLEnDdepO0abNTBl8guNF1SNPbmZS2GZNW8O_NMLp2dTmcx-UcQq4Z5AyYvO1znKyfRjPlHFidg8oByhOyYnWlMs55dUpWwJTMagXFObmIsQcAUYJcEXzfYRjNQM3U0jiHxc5LwITM8B0xUt_RndvuaHpgcZqDmX2g0Q8mUIvDQJepxXBgOzdhS3ucqRv3btrimOSJ8EMCl-SsM0PEq9-7Jh-PD--b5-z17ellc_-aWVHAnIlGVsJ0BhuhlCwaXqVCUChmWqaEwKKrZdFJ5LYRZS0KIYA3BsFKlLaqa7EmN8fcffCfC8ZZ934JqUvUnPGq4GVZQVLJo8oGH2PATu-DG0341gz0YVLd679J9WFSDUqnSZPx7mjE1OHLYdDRuqTE1gW0s269-y_iB_n1hBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127425570</pqid></control><display><type>article</type><title>Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Abo-Zahhad, Essam M. ; Ookawara, Shinichi ; Radwan, Ali ; El-Shazly, A.H. ; ElKady, M.F.</creator><creatorcontrib>Abo-Zahhad, Essam M. ; Ookawara, Shinichi ; Radwan, Ali ; El-Shazly, A.H. ; ElKady, M.F.</creatorcontrib><description>•A three-dimensional thermal model for HCPV/T system was developed.•Four distinct designs of jet impingement heat sinks were evaluated and compared.•Single jet impingement design achieved the best performance of the HCPV/T system. The high solar light concentration onto the photovoltaic cell leads to extremely high cell temperature, which significantly decreases the cell efficiency and degrades its lifetime due to the thermal stresses. One of the main challenges of these types of solar cells is to propose an efficient cooling technique that allows the cells to operate under its recommended operating conditions. Therefore, the focus of this study was to develop a comprehensive three-dimensional model for the high concentrator photovoltaic/thermal (HCPV/T) system. This model comprises a thermal model for a triple-junction solar cell integrated with a thermo-fluid model for four distinct designs of confined jet impingement heat sinks. The results showed that the cell electrical efficiency increased with the coolant flow rate, and sufficient temperature uniformity can be achieved by the jet impingement configurations. Additionally, the use of jet impingement configurations consumed a slight pumping power less than 1% of the generated power in the solar cell. The maximum local temperature of uncooled solar cell was predicted to reach 1360 °C under solar concentration ratio of 1000 Suns. Under the same conditions, the single jet design reduced the maximum local temperature to about 65 °C with coolant mass flow rate of 50 g/min. It should be noted that the thermal stress substantially decreased with the increasing coolant mass flow rate. Exergetic analysis showed that the single jet design attained the maximum total exergy efficiency of 53.25% at the flow rate of 25 g/min.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.09.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Concentrator photovoltaic ; Concentrators ; Configurations ; Confined jet impingement ; Cooling ; Efficiency ; Energy efficiency ; Exergy ; Flow rates ; Heat sinks ; Impingement ; Jet impingement ; Mass flow rate ; Mathematical models ; Multijunction ; Photovoltaic cells ; Photovoltaics ; Power consumption ; Pumps ; Solar cells ; Solar power ; Structure analysis ; Temperature effects ; Thermal analysis ; Thermal stress ; Three dimensional models</subject><ispartof>Energy conversion and management, 2018-11, Vol.176, p.39-54</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3b673afaeb39964b272010491ad1933e4f864f6e2cb358343302bae0c6e6c7883</citedby><cites>FETCH-LOGICAL-c340t-3b673afaeb39964b272010491ad1933e4f864f6e2cb358343302bae0c6e6c7883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2018.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Abo-Zahhad, Essam M.</creatorcontrib><creatorcontrib>Ookawara, Shinichi</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>El-Shazly, A.H.</creatorcontrib><creatorcontrib>ElKady, M.F.</creatorcontrib><title>Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling</title><title>Energy conversion and management</title><description>•A three-dimensional thermal model for HCPV/T system was developed.•Four distinct designs of jet impingement heat sinks were evaluated and compared.•Single jet impingement design achieved the best performance of the HCPV/T system. The high solar light concentration onto the photovoltaic cell leads to extremely high cell temperature, which significantly decreases the cell efficiency and degrades its lifetime due to the thermal stresses. One of the main challenges of these types of solar cells is to propose an efficient cooling technique that allows the cells to operate under its recommended operating conditions. Therefore, the focus of this study was to develop a comprehensive three-dimensional model for the high concentrator photovoltaic/thermal (HCPV/T) system. This model comprises a thermal model for a triple-junction solar cell integrated with a thermo-fluid model for four distinct designs of confined jet impingement heat sinks. The results showed that the cell electrical efficiency increased with the coolant flow rate, and sufficient temperature uniformity can be achieved by the jet impingement configurations. Additionally, the use of jet impingement configurations consumed a slight pumping power less than 1% of the generated power in the solar cell. The maximum local temperature of uncooled solar cell was predicted to reach 1360 °C under solar concentration ratio of 1000 Suns. Under the same conditions, the single jet design reduced the maximum local temperature to about 65 °C with coolant mass flow rate of 50 g/min. It should be noted that the thermal stress substantially decreased with the increasing coolant mass flow rate. Exergetic analysis showed that the single jet design attained the maximum total exergy efficiency of 53.25% at the flow rate of 25 g/min.</description><subject>Concentrator photovoltaic</subject><subject>Concentrators</subject><subject>Configurations</subject><subject>Confined jet impingement</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Energy efficiency</subject><subject>Exergy</subject><subject>Flow rates</subject><subject>Heat sinks</subject><subject>Impingement</subject><subject>Jet impingement</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Multijunction</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Power consumption</subject><subject>Pumps</subject><subject>Solar cells</subject><subject>Solar power</subject><subject>Structure analysis</subject><subject>Temperature effects</subject><subject>Thermal analysis</subject><subject>Thermal stress</subject><subject>Three dimensional models</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoLEnDdepO0abNTBl8guNF1SNPbmZS2GZNW8O_NMLp2dTmcx-UcQq4Z5AyYvO1znKyfRjPlHFidg8oByhOyYnWlMs55dUpWwJTMagXFObmIsQcAUYJcEXzfYRjNQM3U0jiHxc5LwITM8B0xUt_RndvuaHpgcZqDmX2g0Q8mUIvDQJepxXBgOzdhS3ucqRv3btrimOSJ8EMCl-SsM0PEq9-7Jh-PD--b5-z17ellc_-aWVHAnIlGVsJ0BhuhlCwaXqVCUChmWqaEwKKrZdFJ5LYRZS0KIYA3BsFKlLaqa7EmN8fcffCfC8ZZ934JqUvUnPGq4GVZQVLJo8oGH2PATu-DG0341gz0YVLd679J9WFSDUqnSZPx7mjE1OHLYdDRuqTE1gW0s269-y_iB_n1hBQ</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Abo-Zahhad, Essam M.</creator><creator>Ookawara, Shinichi</creator><creator>Radwan, Ali</creator><creator>El-Shazly, A.H.</creator><creator>ElKady, M.F.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20181115</creationdate><title>Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling</title><author>Abo-Zahhad, Essam M. ; Ookawara, Shinichi ; Radwan, Ali ; El-Shazly, A.H. ; ElKady, M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3b673afaeb39964b272010491ad1933e4f864f6e2cb358343302bae0c6e6c7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Concentrator photovoltaic</topic><topic>Concentrators</topic><topic>Configurations</topic><topic>Confined jet impingement</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Energy efficiency</topic><topic>Exergy</topic><topic>Flow rates</topic><topic>Heat sinks</topic><topic>Impingement</topic><topic>Jet impingement</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Multijunction</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Power consumption</topic><topic>Pumps</topic><topic>Solar cells</topic><topic>Solar power</topic><topic>Structure analysis</topic><topic>Temperature effects</topic><topic>Thermal analysis</topic><topic>Thermal stress</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abo-Zahhad, Essam M.</creatorcontrib><creatorcontrib>Ookawara, Shinichi</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>El-Shazly, A.H.</creatorcontrib><creatorcontrib>ElKady, M.F.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abo-Zahhad, Essam M.</au><au>Ookawara, Shinichi</au><au>Radwan, Ali</au><au>El-Shazly, A.H.</au><au>ElKady, M.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling</atitle><jtitle>Energy conversion and management</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>176</volume><spage>39</spage><epage>54</epage><pages>39-54</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A three-dimensional thermal model for HCPV/T system was developed.•Four distinct designs of jet impingement heat sinks were evaluated and compared.•Single jet impingement design achieved the best performance of the HCPV/T system. The high solar light concentration onto the photovoltaic cell leads to extremely high cell temperature, which significantly decreases the cell efficiency and degrades its lifetime due to the thermal stresses. One of the main challenges of these types of solar cells is to propose an efficient cooling technique that allows the cells to operate under its recommended operating conditions. Therefore, the focus of this study was to develop a comprehensive three-dimensional model for the high concentrator photovoltaic/thermal (HCPV/T) system. This model comprises a thermal model for a triple-junction solar cell integrated with a thermo-fluid model for four distinct designs of confined jet impingement heat sinks. The results showed that the cell electrical efficiency increased with the coolant flow rate, and sufficient temperature uniformity can be achieved by the jet impingement configurations. Additionally, the use of jet impingement configurations consumed a slight pumping power less than 1% of the generated power in the solar cell. The maximum local temperature of uncooled solar cell was predicted to reach 1360 °C under solar concentration ratio of 1000 Suns. Under the same conditions, the single jet design reduced the maximum local temperature to about 65 °C with coolant mass flow rate of 50 g/min. It should be noted that the thermal stress substantially decreased with the increasing coolant mass flow rate. Exergetic analysis showed that the single jet design attained the maximum total exergy efficiency of 53.25% at the flow rate of 25 g/min.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2018.09.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2018-11, Vol.176, p.39-54
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2127425570
source ScienceDirect Journals (5 years ago - present)
subjects Concentrator photovoltaic
Concentrators
Configurations
Confined jet impingement
Cooling
Efficiency
Energy efficiency
Exergy
Flow rates
Heat sinks
Impingement
Jet impingement
Mass flow rate
Mathematical models
Multijunction
Photovoltaic cells
Photovoltaics
Power consumption
Pumps
Solar cells
Solar power
Structure analysis
Temperature effects
Thermal analysis
Thermal stress
Three dimensional models
title Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20structure%20analyses%20of%20high%20concentrator%20solar%20cell%20under%20confined%20jet%20impingement%20cooling&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Abo-Zahhad,%20Essam%20M.&rft.date=2018-11-15&rft.volume=176&rft.spage=39&rft.epage=54&rft.pages=39-54&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.09.005&rft_dat=%3Cproquest_cross%3E2127425570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127425570&rft_id=info:pmid/&rft_els_id=S0196890418310008&rfr_iscdi=true