Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance

Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology international 2019-01, Vol.129, p.297-313
Hauptverfasser: Maamari, N., Krebs, A., Weikert, S., Wegener, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue
container_start_page 297
container_title Tribology international
container_volume 129
creator Maamari, N.
Krebs, A.
Weikert, S.
Wegener, K.
description Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A. [Display omitted] •Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.
doi_str_mv 10.1016/j.triboint.2018.08.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127423764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X18304201</els_id><sourcerecordid>2127423764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4FCXjemq_dbG9K8QsKXhS8hWz2pX1Lm22TtOK_d0vrWRgYHszMY4aQW84mnPHqvpvkiE2PIU8E4_WEDRDqjIx4raeFUJU6JyMmGS8qPf26JFcpdYwxraZ6RPIMQo52tfqhHlraR_TogDY2DZd1GfdALcQ-ZZvR0QZsxLCg35iXdLuzCQsMHgNmoCdJyuh9gJSoDS1d4mJJE8R9T12_3qzQBgfX5MLbVYKbE4_J5_PTx-y1mL-_vM0e54WTiuXCAW8rX7tSeKdq3XpbctE0UrBSNNJ7wSwXlda-9FJyrwWruWxU7R0XJYdGjsndMXcT--0OUjZdv4theGkEF1oJqSs1qKqjyg01UwRvNhHXNv4YzsxhYdOZv4XNYWHDBoiD8eFohKHDHiGa5BCGfi1GcNm0Pf4X8QvmB4qY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127423764</pqid></control><display><type>article</type><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</creator><creatorcontrib>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</creatorcontrib><description>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A. [Display omitted] •Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2018.08.024</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Active bearing ; Aerostatic bearing ; Aerostatic bearings ; Aerostatics ; Bearings ; Compliance ; Deformation ; Deformation mechanisms ; Dynamic stability ; Feedback ; Finite element method ; Geometry ; Infinite stiffness ; Leaf springs ; Load compensation ; Macro-positioning ; Magnetism ; Orifices ; Positioning system ; Servo compliance ; Stability analysis ; Stiffening ; Stiffness</subject><ispartof>Tribology international, 2019-01, Vol.129, p.297-313</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</citedby><cites>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2018.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Maamari, N.</creatorcontrib><creatorcontrib>Krebs, A.</creatorcontrib><creatorcontrib>Weikert, S.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><title>Tribology international</title><description>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A. [Display omitted] •Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</description><subject>Active bearing</subject><subject>Aerostatic bearing</subject><subject>Aerostatic bearings</subject><subject>Aerostatics</subject><subject>Bearings</subject><subject>Compliance</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dynamic stability</subject><subject>Feedback</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Infinite stiffness</subject><subject>Leaf springs</subject><subject>Load compensation</subject><subject>Macro-positioning</subject><subject>Magnetism</subject><subject>Orifices</subject><subject>Positioning system</subject><subject>Servo compliance</subject><subject>Stability analysis</subject><subject>Stiffening</subject><subject>Stiffness</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4FCXjemq_dbG9K8QsKXhS8hWz2pX1Lm22TtOK_d0vrWRgYHszMY4aQW84mnPHqvpvkiE2PIU8E4_WEDRDqjIx4raeFUJU6JyMmGS8qPf26JFcpdYwxraZ6RPIMQo52tfqhHlraR_TogDY2DZd1GfdALcQ-ZZvR0QZsxLCg35iXdLuzCQsMHgNmoCdJyuh9gJSoDS1d4mJJE8R9T12_3qzQBgfX5MLbVYKbE4_J5_PTx-y1mL-_vM0e54WTiuXCAW8rX7tSeKdq3XpbctE0UrBSNNJ7wSwXlda-9FJyrwWruWxU7R0XJYdGjsndMXcT--0OUjZdv4theGkEF1oJqSs1qKqjyg01UwRvNhHXNv4YzsxhYdOZv4XNYWHDBoiD8eFohKHDHiGa5BCGfi1GcNm0Pf4X8QvmB4qY</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Maamari, N.</creator><creator>Krebs, A.</creator><creator>Weikert, S.</creator><creator>Wegener, K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><author>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active bearing</topic><topic>Aerostatic bearing</topic><topic>Aerostatic bearings</topic><topic>Aerostatics</topic><topic>Bearings</topic><topic>Compliance</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dynamic stability</topic><topic>Feedback</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Infinite stiffness</topic><topic>Leaf springs</topic><topic>Load compensation</topic><topic>Macro-positioning</topic><topic>Magnetism</topic><topic>Orifices</topic><topic>Positioning system</topic><topic>Servo compliance</topic><topic>Stability analysis</topic><topic>Stiffening</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maamari, N.</creatorcontrib><creatorcontrib>Krebs, A.</creatorcontrib><creatorcontrib>Weikert, S.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maamari, N.</au><au>Krebs, A.</au><au>Weikert, S.</au><au>Wegener, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</atitle><jtitle>Tribology international</jtitle><date>2019-01</date><risdate>2019</risdate><volume>129</volume><spage>297</spage><epage>313</epage><pages>297-313</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A. [Display omitted] •Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2018.08.024</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2019-01, Vol.129, p.297-313
issn 0301-679X
1879-2464
language eng
recordid cdi_proquest_journals_2127423764
source Elsevier ScienceDirect Journals Complete
subjects Active bearing
Aerostatic bearing
Aerostatic bearings
Aerostatics
Bearings
Compliance
Deformation
Deformation mechanisms
Dynamic stability
Feedback
Finite element method
Geometry
Infinite stiffness
Leaf springs
Load compensation
Macro-positioning
Magnetism
Orifices
Positioning system
Servo compliance
Stability analysis
Stiffening
Stiffness
title Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centrally%20fed%20orifice%20based%20active%20aerostatic%20bearing%20with%20quasi-infinite%20static%20stiffness%20and%20high%20servo%20compliance&rft.jtitle=Tribology%20international&rft.au=Maamari,%20N.&rft.date=2019-01&rft.volume=129&rft.spage=297&rft.epage=313&rft.pages=297-313&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2018.08.024&rft_dat=%3Cproquest_cross%3E2127423764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127423764&rft_id=info:pmid/&rft_els_id=S0301679X18304201&rfr_iscdi=true