Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance
Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiff...
Gespeichert in:
Veröffentlicht in: | Tribology international 2019-01, Vol.129, p.297-313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | |
container_start_page | 297 |
container_title | Tribology international |
container_volume | 129 |
creator | Maamari, N. Krebs, A. Weikert, S. Wegener, K. |
description | Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A.
[Display omitted]
•Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A. |
doi_str_mv | 10.1016/j.triboint.2018.08.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2127423764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X18304201</els_id><sourcerecordid>2127423764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4FCXjemq_dbG9K8QsKXhS8hWz2pX1Lm22TtOK_d0vrWRgYHszMY4aQW84mnPHqvpvkiE2PIU8E4_WEDRDqjIx4raeFUJU6JyMmGS8qPf26JFcpdYwxraZ6RPIMQo52tfqhHlraR_TogDY2DZd1GfdALcQ-ZZvR0QZsxLCg35iXdLuzCQsMHgNmoCdJyuh9gJSoDS1d4mJJE8R9T12_3qzQBgfX5MLbVYKbE4_J5_PTx-y1mL-_vM0e54WTiuXCAW8rX7tSeKdq3XpbctE0UrBSNNJ7wSwXlda-9FJyrwWruWxU7R0XJYdGjsndMXcT--0OUjZdv4theGkEF1oJqSs1qKqjyg01UwRvNhHXNv4YzsxhYdOZv4XNYWHDBoiD8eFohKHDHiGa5BCGfi1GcNm0Pf4X8QvmB4qY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127423764</pqid></control><display><type>article</type><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</creator><creatorcontrib>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</creatorcontrib><description>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A.
[Display omitted]
•Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2018.08.024</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Active bearing ; Aerostatic bearing ; Aerostatic bearings ; Aerostatics ; Bearings ; Compliance ; Deformation ; Deformation mechanisms ; Dynamic stability ; Feedback ; Finite element method ; Geometry ; Infinite stiffness ; Leaf springs ; Load compensation ; Macro-positioning ; Magnetism ; Orifices ; Positioning system ; Servo compliance ; Stability analysis ; Stiffening ; Stiffness</subject><ispartof>Tribology international, 2019-01, Vol.129, p.297-313</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</citedby><cites>FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2018.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Maamari, N.</creatorcontrib><creatorcontrib>Krebs, A.</creatorcontrib><creatorcontrib>Weikert, S.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><title>Tribology international</title><description>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A.
[Display omitted]
•Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</description><subject>Active bearing</subject><subject>Aerostatic bearing</subject><subject>Aerostatic bearings</subject><subject>Aerostatics</subject><subject>Bearings</subject><subject>Compliance</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dynamic stability</subject><subject>Feedback</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Infinite stiffness</subject><subject>Leaf springs</subject><subject>Load compensation</subject><subject>Macro-positioning</subject><subject>Magnetism</subject><subject>Orifices</subject><subject>Positioning system</subject><subject>Servo compliance</subject><subject>Stability analysis</subject><subject>Stiffening</subject><subject>Stiffness</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4FCXjemq_dbG9K8QsKXhS8hWz2pX1Lm22TtOK_d0vrWRgYHszMY4aQW84mnPHqvpvkiE2PIU8E4_WEDRDqjIx4raeFUJU6JyMmGS8qPf26JFcpdYwxraZ6RPIMQo52tfqhHlraR_TogDY2DZd1GfdALcQ-ZZvR0QZsxLCg35iXdLuzCQsMHgNmoCdJyuh9gJSoDS1d4mJJE8R9T12_3qzQBgfX5MLbVYKbE4_J5_PTx-y1mL-_vM0e54WTiuXCAW8rX7tSeKdq3XpbctE0UrBSNNJ7wSwXlda-9FJyrwWruWxU7R0XJYdGjsndMXcT--0OUjZdv4theGkEF1oJqSs1qKqjyg01UwRvNhHXNv4YzsxhYdOZv4XNYWHDBoiD8eFohKHDHiGa5BCGfi1GcNm0Pf4X8QvmB4qY</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Maamari, N.</creator><creator>Krebs, A.</creator><creator>Weikert, S.</creator><creator>Wegener, K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</title><author>Maamari, N. ; Krebs, A. ; Weikert, S. ; Wegener, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ce1d6f8c52fc487dfa512bb32052b3ff20a12677f5f331f720813b48fc1251eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active bearing</topic><topic>Aerostatic bearing</topic><topic>Aerostatic bearings</topic><topic>Aerostatics</topic><topic>Bearings</topic><topic>Compliance</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dynamic stability</topic><topic>Feedback</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Infinite stiffness</topic><topic>Leaf springs</topic><topic>Load compensation</topic><topic>Macro-positioning</topic><topic>Magnetism</topic><topic>Orifices</topic><topic>Positioning system</topic><topic>Servo compliance</topic><topic>Stability analysis</topic><topic>Stiffening</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maamari, N.</creatorcontrib><creatorcontrib>Krebs, A.</creatorcontrib><creatorcontrib>Weikert, S.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maamari, N.</au><au>Krebs, A.</au><au>Weikert, S.</au><au>Wegener, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance</atitle><jtitle>Tribology international</jtitle><date>2019-01</date><risdate>2019</risdate><volume>129</volume><spage>297</spage><epage>313</epage><pages>297-313</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Active compensation of aerostatic bearing enhances their inherent limited stiffness and adds macro positioning capabilities. Current active solution relies on a position feedback to reach high stiffness. In this study, a novel concept that replaces costly position feedback by a self-regulating stiffening mechanism is investigated. This concept features a guided conical deformation based on integrated leaf springs. This balances the pressure and servo induced deformation, leading to quasi-infinite stiffness and high servo compliance. A lumped and a finite element models governing the static behavior are presented and benchmarked. Open loop stability is assessed using a linearized lumped dynamic analysis, and solutions based on a mechanical and a mechatronic approach are proposed. Finally, the prototype is tested in open loop, proving a quasi-infinite stiffness and a servo compliance of 3.4μm/A.
[Display omitted]
•Mechanical concept of active aerostatic bearing based on voice coil actuation ensuring a linearly varying gap geometry.•Modelling using a lumped approach encapsulating thin-film, structural deformation, and magnetism.•Mechanical design and finite element model compared to the lumped approach.•Experimental results confirmed a quasi-infinite stiffness and a servo compliance of 3.4μm/A.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2018.08.024</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2019-01, Vol.129, p.297-313 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_journals_2127423764 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Active bearing Aerostatic bearing Aerostatic bearings Aerostatics Bearings Compliance Deformation Deformation mechanisms Dynamic stability Feedback Finite element method Geometry Infinite stiffness Leaf springs Load compensation Macro-positioning Magnetism Orifices Positioning system Servo compliance Stability analysis Stiffening Stiffness |
title | Centrally fed orifice based active aerostatic bearing with quasi-infinite static stiffness and high servo compliance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centrally%20fed%20orifice%20based%20active%20aerostatic%20bearing%20with%20quasi-infinite%20static%20stiffness%20and%20high%20servo%20compliance&rft.jtitle=Tribology%20international&rft.au=Maamari,%20N.&rft.date=2019-01&rft.volume=129&rft.spage=297&rft.epage=313&rft.pages=297-313&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2018.08.024&rft_dat=%3Cproquest_cross%3E2127423764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127423764&rft_id=info:pmid/&rft_els_id=S0301679X18304201&rfr_iscdi=true |