Exact cover of states in the discrete state-space system

Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wiśniewski Remigiusz, Stefanowicz Łukasz, Wiśniewska Monika, Kur, Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1702
creator Wiśniewski Remigiusz
Stefanowicz Łukasz
Wiśniewska Monika
Kur, Daniel
description Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.
doi_str_mv 10.1063/1.4938884
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126987083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126987083</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-2e332ec05476fa8366b0ce8f2d05d2ce1257c7951c20bd1bcab38774e53e78d23</originalsourceid><addsrcrecordid>eNotjUtLAzEURoMoOFYX_oOA69Sbe_NcSqkPKLhRcFcymTvYop1xkor-ewt19R3O4nxCXGuYa3B0q-cmUgjBnIhGW6uVd9qdigYgGoWG3s7FRSlbAIzeh0aE5U_KVebhmyc59LLUVLnIzU7Wd5bdpuSJKx-1KmPKB_4tlT8vxVmfPgpf_e9MvN4vXxaPavX88LS4W6kRLVWFTIScwRrv-hTIuRYyhx47sB1m1mh99tHqjNB2us2ppeC9YUvsQ4c0EzfH7jgNX3sudb0d9tPucLlGjS4GD4HoD6MVRqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126987083</pqid></control><display><type>conference_proceeding</type><title>Exact cover of states in the discrete state-space system</title><source>AIP Journals Complete</source><creator>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</creator><creatorcontrib>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</creatorcontrib><description>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4938884</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boolean algebra ; Boolean functions ; Graph theory ; Graphs ; Heuristic methods ; Matrix reduction ; Polynomials ; State space models</subject><ispartof>AIP conference proceedings, 2015, Vol.1702 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924</link.rule.ids></links><search><creatorcontrib>Wiśniewski Remigiusz</creatorcontrib><creatorcontrib>Stefanowicz Łukasz</creatorcontrib><creatorcontrib>Wiśniewska Monika</creatorcontrib><creatorcontrib>Kur, Daniel</creatorcontrib><title>Exact cover of states in the discrete state-space system</title><title>AIP conference proceedings</title><description>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</description><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic methods</subject><subject>Matrix reduction</subject><subject>Polynomials</subject><subject>State space models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjUtLAzEURoMoOFYX_oOA69Sbe_NcSqkPKLhRcFcymTvYop1xkor-ewt19R3O4nxCXGuYa3B0q-cmUgjBnIhGW6uVd9qdigYgGoWG3s7FRSlbAIzeh0aE5U_KVebhmyc59LLUVLnIzU7Wd5bdpuSJKx-1KmPKB_4tlT8vxVmfPgpf_e9MvN4vXxaPavX88LS4W6kRLVWFTIScwRrv-hTIuRYyhx47sB1m1mh99tHqjNB2us2ppeC9YUvsQ4c0EzfH7jgNX3sudb0d9tPucLlGjS4GD4HoD6MVRqc</recordid><startdate>20151231</startdate><enddate>20151231</enddate><creator>Wiśniewski Remigiusz</creator><creator>Stefanowicz Łukasz</creator><creator>Wiśniewska Monika</creator><creator>Kur, Daniel</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151231</creationdate><title>Exact cover of states in the discrete state-space system</title><author>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-2e332ec05476fa8366b0ce8f2d05d2ce1257c7951c20bd1bcab38774e53e78d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic methods</topic><topic>Matrix reduction</topic><topic>Polynomials</topic><topic>State space models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiśniewski Remigiusz</creatorcontrib><creatorcontrib>Stefanowicz Łukasz</creatorcontrib><creatorcontrib>Wiśniewska Monika</creatorcontrib><creatorcontrib>Kur, Daniel</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiśniewski Remigiusz</au><au>Stefanowicz Łukasz</au><au>Wiśniewska Monika</au><au>Kur, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exact cover of states in the discrete state-space system</atitle><btitle>AIP conference proceedings</btitle><date>2015-12-31</date><risdate>2015</risdate><volume>1702</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4938884</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2015, Vol.1702 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2126987083
source AIP Journals Complete
subjects Boolean algebra
Boolean functions
Graph theory
Graphs
Heuristic methods
Matrix reduction
Polynomials
State space models
title Exact cover of states in the discrete state-space system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exact%20cover%20of%20states%20in%20the%20discrete%20state-space%20system&rft.btitle=AIP%20conference%20proceedings&rft.au=Wi%C5%9Bniewski%20Remigiusz&rft.date=2015-12-31&rft.volume=1702&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4938884&rft_dat=%3Cproquest%3E2126987083%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126987083&rft_id=info:pmid/&rfr_iscdi=true