Exact cover of states in the discrete state-space system
Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1702 |
creator | Wiśniewski Remigiusz Stefanowicz Łukasz Wiśniewska Monika Kur, Daniel |
description | Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial. |
doi_str_mv | 10.1063/1.4938884 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126987083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126987083</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-2e332ec05476fa8366b0ce8f2d05d2ce1257c7951c20bd1bcab38774e53e78d23</originalsourceid><addsrcrecordid>eNotjUtLAzEURoMoOFYX_oOA69Sbe_NcSqkPKLhRcFcymTvYop1xkor-ewt19R3O4nxCXGuYa3B0q-cmUgjBnIhGW6uVd9qdigYgGoWG3s7FRSlbAIzeh0aE5U_KVebhmyc59LLUVLnIzU7Wd5bdpuSJKx-1KmPKB_4tlT8vxVmfPgpf_e9MvN4vXxaPavX88LS4W6kRLVWFTIScwRrv-hTIuRYyhx47sB1m1mh99tHqjNB2us2ppeC9YUvsQ4c0EzfH7jgNX3sudb0d9tPucLlGjS4GD4HoD6MVRqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126987083</pqid></control><display><type>conference_proceeding</type><title>Exact cover of states in the discrete state-space system</title><source>AIP Journals Complete</source><creator>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</creator><creatorcontrib>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</creatorcontrib><description>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4938884</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boolean algebra ; Boolean functions ; Graph theory ; Graphs ; Heuristic methods ; Matrix reduction ; Polynomials ; State space models</subject><ispartof>AIP conference proceedings, 2015, Vol.1702 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924</link.rule.ids></links><search><creatorcontrib>Wiśniewski Remigiusz</creatorcontrib><creatorcontrib>Stefanowicz Łukasz</creatorcontrib><creatorcontrib>Wiśniewska Monika</creatorcontrib><creatorcontrib>Kur, Daniel</creatorcontrib><title>Exact cover of states in the discrete state-space system</title><title>AIP conference proceedings</title><description>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</description><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic methods</subject><subject>Matrix reduction</subject><subject>Polynomials</subject><subject>State space models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjUtLAzEURoMoOFYX_oOA69Sbe_NcSqkPKLhRcFcymTvYop1xkor-ewt19R3O4nxCXGuYa3B0q-cmUgjBnIhGW6uVd9qdigYgGoWG3s7FRSlbAIzeh0aE5U_KVebhmyc59LLUVLnIzU7Wd5bdpuSJKx-1KmPKB_4tlT8vxVmfPgpf_e9MvN4vXxaPavX88LS4W6kRLVWFTIScwRrv-hTIuRYyhx47sB1m1mh99tHqjNB2us2ppeC9YUvsQ4c0EzfH7jgNX3sudb0d9tPucLlGjS4GD4HoD6MVRqc</recordid><startdate>20151231</startdate><enddate>20151231</enddate><creator>Wiśniewski Remigiusz</creator><creator>Stefanowicz Łukasz</creator><creator>Wiśniewska Monika</creator><creator>Kur, Daniel</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151231</creationdate><title>Exact cover of states in the discrete state-space system</title><author>Wiśniewski Remigiusz ; Stefanowicz Łukasz ; Wiśniewska Monika ; Kur, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-2e332ec05476fa8366b0ce8f2d05d2ce1257c7951c20bd1bcab38774e53e78d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic methods</topic><topic>Matrix reduction</topic><topic>Polynomials</topic><topic>State space models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiśniewski Remigiusz</creatorcontrib><creatorcontrib>Stefanowicz Łukasz</creatorcontrib><creatorcontrib>Wiśniewska Monika</creatorcontrib><creatorcontrib>Kur, Daniel</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiśniewski Remigiusz</au><au>Stefanowicz Łukasz</au><au>Wiśniewska Monika</au><au>Kur, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exact cover of states in the discrete state-space system</atitle><btitle>AIP conference proceedings</btitle><date>2015-12-31</date><risdate>2015</risdate><volume>1702</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Given the discrete state-space system, the set cover problem is defined as selection of the minimal number of global states to cover all the local states. Commonly known methods base on the matrix reduction, boolean function transformation or heuristics ideas. Most of them are inefficient because of computational/memory complexity or non-optimal results. We propose an application of xt-hypergraphs to compute the solution in case where the discrete system can be represented by an xt-hypergraph. Recognition, as well as computation of exact cover in case of xt-hypergraphs is bounded by a polynomial in the number of local states. Therefore, the whole cover process problem turns out to be polynomial.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4938884</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2015, Vol.1702 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2126987083 |
source | AIP Journals Complete |
subjects | Boolean algebra Boolean functions Graph theory Graphs Heuristic methods Matrix reduction Polynomials State space models |
title | Exact cover of states in the discrete state-space system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exact%20cover%20of%20states%20in%20the%20discrete%20state-space%20system&rft.btitle=AIP%20conference%20proceedings&rft.au=Wi%C5%9Bniewski%20Remigiusz&rft.date=2015-12-31&rft.volume=1702&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4938884&rft_dat=%3Cproquest%3E2126987083%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126987083&rft_id=info:pmid/&rfr_iscdi=true |