Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions

The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project are tasked with extracting the heat deposited on the optics. These suspensions have a nonuniform temperature, requiring the calculation of thermal noise in nonequilibrium conditions. While it is not possibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-05, Vol.97 (10), Article 102001
Hauptverfasser: Komori, Kentaro, Enomoto, Yutaro, Takeda, Hiroki, Michimura, Yuta, Somiya, Kentaro, Ando, Masaki, Ballmer, Stefan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project are tasked with extracting the heat deposited on the optics. These suspensions have a nonuniform temperature, requiring the calculation of thermal noise in nonequilibrium conditions. While it is not possible to describe the whole suspension system with one temperature, the local temperature at every point in the system is still well defined. We therefore generalize the application of the fluctuation-dissipation theorem to mechanical systems, pioneered by Saulson and Levin, to nonequilibrium conditions in which a temperature can only be defined locally. The result is intuitive in the sense that the thermal noise in the observed degree of freedom is given by averaging the temperature field, weighted by the dissipation density associated with that particular degree of freedom. After proving this theorem, we apply the result to examples of increasing complexity: a simple spring, the bending of a pendulum suspension fiber, and a model of the KAGRA cryogenic suspension. We conclude by outlining the application to nonequilibrium thermoelastic noise.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.97.102001