Stable Palatini f ( R ) braneworld

We consider the static domain wall braneworld scenario constructed from the Palatini formalism f(R) theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we avoid dealing with the higher-order equations. We develop the techniques to deal with the coup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-07, Vol.98 (2), Article 024027
Hauptverfasser: Gu, Bao-Min, Liu, Yu-Xiao, Zhong, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. D
container_volume 98
creator Gu, Bao-Min
Liu, Yu-Xiao
Zhong, Yuan
description We consider the static domain wall braneworld scenario constructed from the Palatini formalism f(R) theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we avoid dealing with the higher-order equations. We develop the techniques to deal with the coupled system. We show that under some conditions, the scalar perturbation simply oscillates with time, which guarantees the stability. We also discuss the localization condition of the scalar mode by analyzing the effective potential and the fifth-dimensional profile of the scalar mode. We apply these results to an explicit example, and show that only some of the solutions allow for stable scalar perturbations. These stable solutions also give nonlocalizable massless mode. This is important for reproducing a viable four-dimensional gravity.
doi_str_mv 10.1103/PhysRevD.98.024027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126930643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126930643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-d01f5290e0459efd2f4d9dbe7ab0dd07da00807ea06a7e103b89e93cd9e7f563</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3Cy4AKHhLWdxNkjKr9SJarSu-XEa5EqNMVOQX17ggKcZg6jmdHH2LmAVAhQN8u3Q1zR512KZQoyA6mP2ERmGhIAicf_XsApm8W4gcEWgFqICbt47W3VEl_a1vbNtuGeX_EVv-ZVsFv66kLrztiJt22k2a9O2frhfj1_ShYvj8_z20VSS533iQPhc4lAkOVI3kmfOXQVaVuBc6CdBShBk4XCahp-VyUSqtohaZ8Xasoux9pd6D72FHuz6fZhOywaKWSBCopMDSk5purQxRjIm11o3m04GAHmh4b5o2GwNCMN9Q1-9lGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126930643</pqid></control><display><type>article</type><title>Stable Palatini f ( R ) braneworld</title><source>American Physical Society Journals</source><creator>Gu, Bao-Min ; Liu, Yu-Xiao ; Zhong, Yuan</creator><creatorcontrib>Gu, Bao-Min ; Liu, Yu-Xiao ; Zhong, Yuan</creatorcontrib><description>We consider the static domain wall braneworld scenario constructed from the Palatini formalism f(R) theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we avoid dealing with the higher-order equations. We develop the techniques to deal with the coupled system. We show that under some conditions, the scalar perturbation simply oscillates with time, which guarantees the stability. We also discuss the localization condition of the scalar mode by analyzing the effective potential and the fifth-dimensional profile of the scalar mode. We apply these results to an explicit example, and show that only some of the solutions allow for stable scalar perturbations. These stable solutions also give nonlocalizable massless mode. This is important for reproducing a viable four-dimensional gravity.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.024027</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Domain walls ; Formalism ; Tensors</subject><ispartof>Physical review. D, 2018-07, Vol.98 (2), Article 024027</ispartof><rights>Copyright American Physical Society Jul 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-d01f5290e0459efd2f4d9dbe7ab0dd07da00807ea06a7e103b89e93cd9e7f563</citedby><cites>FETCH-LOGICAL-c275t-d01f5290e0459efd2f4d9dbe7ab0dd07da00807ea06a7e103b89e93cd9e7f563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Bao-Min</creatorcontrib><creatorcontrib>Liu, Yu-Xiao</creatorcontrib><creatorcontrib>Zhong, Yuan</creatorcontrib><title>Stable Palatini f ( R ) braneworld</title><title>Physical review. D</title><description>We consider the static domain wall braneworld scenario constructed from the Palatini formalism f(R) theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we avoid dealing with the higher-order equations. We develop the techniques to deal with the coupled system. We show that under some conditions, the scalar perturbation simply oscillates with time, which guarantees the stability. We also discuss the localization condition of the scalar mode by analyzing the effective potential and the fifth-dimensional profile of the scalar mode. We apply these results to an explicit example, and show that only some of the solutions allow for stable scalar perturbations. These stable solutions also give nonlocalizable massless mode. This is important for reproducing a viable four-dimensional gravity.</description><subject>Domain walls</subject><subject>Formalism</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3Cy4AKHhLWdxNkjKr9SJarSu-XEa5EqNMVOQX17ggKcZg6jmdHH2LmAVAhQN8u3Q1zR512KZQoyA6mP2ERmGhIAicf_XsApm8W4gcEWgFqICbt47W3VEl_a1vbNtuGeX_EVv-ZVsFv66kLrztiJt22k2a9O2frhfj1_ShYvj8_z20VSS533iQPhc4lAkOVI3kmfOXQVaVuBc6CdBShBk4XCahp-VyUSqtohaZ8Xasoux9pd6D72FHuz6fZhOywaKWSBCopMDSk5purQxRjIm11o3m04GAHmh4b5o2GwNCMN9Q1-9lGU</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Gu, Bao-Min</creator><creator>Liu, Yu-Xiao</creator><creator>Zhong, Yuan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180715</creationdate><title>Stable Palatini f ( R ) braneworld</title><author>Gu, Bao-Min ; Liu, Yu-Xiao ; Zhong, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-d01f5290e0459efd2f4d9dbe7ab0dd07da00807ea06a7e103b89e93cd9e7f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Domain walls</topic><topic>Formalism</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Bao-Min</creatorcontrib><creatorcontrib>Liu, Yu-Xiao</creatorcontrib><creatorcontrib>Zhong, Yuan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Bao-Min</au><au>Liu, Yu-Xiao</au><au>Zhong, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Palatini f ( R ) braneworld</atitle><jtitle>Physical review. D</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>98</volume><issue>2</issue><artnum>024027</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We consider the static domain wall braneworld scenario constructed from the Palatini formalism f(R) theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we avoid dealing with the higher-order equations. We develop the techniques to deal with the coupled system. We show that under some conditions, the scalar perturbation simply oscillates with time, which guarantees the stability. We also discuss the localization condition of the scalar mode by analyzing the effective potential and the fifth-dimensional profile of the scalar mode. We apply these results to an explicit example, and show that only some of the solutions allow for stable scalar perturbations. These stable solutions also give nonlocalizable massless mode. This is important for reproducing a viable four-dimensional gravity.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.024027</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-07, Vol.98 (2), Article 024027
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2126930643
source American Physical Society Journals
subjects Domain walls
Formalism
Tensors
title Stable Palatini f ( R ) braneworld
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Palatini%20f%20(%20R%20)%20braneworld&rft.jtitle=Physical%20review.%20D&rft.au=Gu,%20Bao-Min&rft.date=2018-07-15&rft.volume=98&rft.issue=2&rft.artnum=024027&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.024027&rft_dat=%3Cproquest_cross%3E2126930643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126930643&rft_id=info:pmid/&rfr_iscdi=true