Anisotropic thermal expansion in flexible materials
A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-10, Vol.96 (13), Article 134113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Physical review. B |
container_volume | 96 |
creator | Romao, Carl P. |
description | A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion. |
doi_str_mv | 10.1103/PhysRevB.96.134113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126925873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126925873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWGpfwNWA6xnPSeZ2lrV4g4Iiug6ZTEJT5mYylfbtHRl1cfjP4r_Ax9g1QoII4vZ1dwpv5usuoTxBkSKKM7bgaU4xUU7n_38Gl2wVwh4AMAcqgBZMrDsX-tH3g9PRuDO-VU1kjoPqguu7yHWRbczRVY2JWjUa71QTrtiFncSsfnXJPh7u3zdP8fbl8Xmz3saaF9kYG50hoTCVtbWptC0qYYWuFaciJYUaSq4U8ZxqXiqOgiugEsV0UEJZabFkN3Pv4PvPgwmj3PcH302TkuOU41lZiMnFZ5f2fQjeWDl41yp_kgjyh4_84yMplzMf8Q2CxVn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126925873</pqid></control><display><type>article</type><title>Anisotropic thermal expansion in flexible materials</title><source>American Physical Society Journals</source><creator>Romao, Carl P.</creator><creatorcontrib>Romao, Carl P.</creatorcontrib><description>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.134113</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Calcite ; Complex systems ; Dependence ; Gruneisen parameter ; Model testing ; Modulus of elasticity ; Perturbation theory ; Tensors ; Thermal expansion</subject><ispartof>Physical review. B, 2017-10, Vol.96 (13), Article 134113</ispartof><rights>Copyright American Physical Society Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</citedby><cites>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Romao, Carl P.</creatorcontrib><title>Anisotropic thermal expansion in flexible materials</title><title>Physical review. B</title><description>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</description><subject>Anisotropy</subject><subject>Calcite</subject><subject>Complex systems</subject><subject>Dependence</subject><subject>Gruneisen parameter</subject><subject>Model testing</subject><subject>Modulus of elasticity</subject><subject>Perturbation theory</subject><subject>Tensors</subject><subject>Thermal expansion</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWGpfwNWA6xnPSeZ2lrV4g4Iiug6ZTEJT5mYylfbtHRl1cfjP4r_Ax9g1QoII4vZ1dwpv5usuoTxBkSKKM7bgaU4xUU7n_38Gl2wVwh4AMAcqgBZMrDsX-tH3g9PRuDO-VU1kjoPqguu7yHWRbczRVY2JWjUa71QTrtiFncSsfnXJPh7u3zdP8fbl8Xmz3saaF9kYG50hoTCVtbWptC0qYYWuFaciJYUaSq4U8ZxqXiqOgiugEsV0UEJZabFkN3Pv4PvPgwmj3PcH302TkuOU41lZiMnFZ5f2fQjeWDl41yp_kgjyh4_84yMplzMf8Q2CxVn-</recordid><startdate>20171018</startdate><enddate>20171018</enddate><creator>Romao, Carl P.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171018</creationdate><title>Anisotropic thermal expansion in flexible materials</title><author>Romao, Carl P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Calcite</topic><topic>Complex systems</topic><topic>Dependence</topic><topic>Gruneisen parameter</topic><topic>Model testing</topic><topic>Modulus of elasticity</topic><topic>Perturbation theory</topic><topic>Tensors</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romao, Carl P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romao, Carl P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic thermal expansion in flexible materials</atitle><jtitle>Physical review. B</jtitle><date>2017-10-18</date><risdate>2017</risdate><volume>96</volume><issue>13</issue><artnum>134113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.134113</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-10, Vol.96 (13), Article 134113 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2126925873 |
source | American Physical Society Journals |
subjects | Anisotropy Calcite Complex systems Dependence Gruneisen parameter Model testing Modulus of elasticity Perturbation theory Tensors Thermal expansion |
title | Anisotropic thermal expansion in flexible materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20thermal%20expansion%20in%20flexible%20materials&rft.jtitle=Physical%20review.%20B&rft.au=Romao,%20Carl%20P.&rft.date=2017-10-18&rft.volume=96&rft.issue=13&rft.artnum=134113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.134113&rft_dat=%3Cproquest_cross%3E2126925873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126925873&rft_id=info:pmid/&rfr_iscdi=true |