Anisotropic thermal expansion in flexible materials

A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-10, Vol.96 (13), Article 134113
1. Verfasser: Romao, Carl P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Physical review. B
container_volume 96
creator Romao, Carl P.
description A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.
doi_str_mv 10.1103/PhysRevB.96.134113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126925873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126925873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWGpfwNWA6xnPSeZ2lrV4g4Iiug6ZTEJT5mYylfbtHRl1cfjP4r_Ax9g1QoII4vZ1dwpv5usuoTxBkSKKM7bgaU4xUU7n_38Gl2wVwh4AMAcqgBZMrDsX-tH3g9PRuDO-VU1kjoPqguu7yHWRbczRVY2JWjUa71QTrtiFncSsfnXJPh7u3zdP8fbl8Xmz3saaF9kYG50hoTCVtbWptC0qYYWuFaciJYUaSq4U8ZxqXiqOgiugEsV0UEJZabFkN3Pv4PvPgwmj3PcH302TkuOU41lZiMnFZ5f2fQjeWDl41yp_kgjyh4_84yMplzMf8Q2CxVn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126925873</pqid></control><display><type>article</type><title>Anisotropic thermal expansion in flexible materials</title><source>American Physical Society Journals</source><creator>Romao, Carl P.</creator><creatorcontrib>Romao, Carl P.</creatorcontrib><description>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.134113</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Calcite ; Complex systems ; Dependence ; Gruneisen parameter ; Model testing ; Modulus of elasticity ; Perturbation theory ; Tensors ; Thermal expansion</subject><ispartof>Physical review. B, 2017-10, Vol.96 (13), Article 134113</ispartof><rights>Copyright American Physical Society Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</citedby><cites>FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Romao, Carl P.</creatorcontrib><title>Anisotropic thermal expansion in flexible materials</title><title>Physical review. B</title><description>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</description><subject>Anisotropy</subject><subject>Calcite</subject><subject>Complex systems</subject><subject>Dependence</subject><subject>Gruneisen parameter</subject><subject>Model testing</subject><subject>Modulus of elasticity</subject><subject>Perturbation theory</subject><subject>Tensors</subject><subject>Thermal expansion</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWGpfwNWA6xnPSeZ2lrV4g4Iiug6ZTEJT5mYylfbtHRl1cfjP4r_Ax9g1QoII4vZ1dwpv5usuoTxBkSKKM7bgaU4xUU7n_38Gl2wVwh4AMAcqgBZMrDsX-tH3g9PRuDO-VU1kjoPqguu7yHWRbczRVY2JWjUa71QTrtiFncSsfnXJPh7u3zdP8fbl8Xmz3saaF9kYG50hoTCVtbWptC0qYYWuFaciJYUaSq4U8ZxqXiqOgiugEsV0UEJZabFkN3Pv4PvPgwmj3PcH302TkuOU41lZiMnFZ5f2fQjeWDl41yp_kgjyh4_84yMplzMf8Q2CxVn-</recordid><startdate>20171018</startdate><enddate>20171018</enddate><creator>Romao, Carl P.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171018</creationdate><title>Anisotropic thermal expansion in flexible materials</title><author>Romao, Carl P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ec51913ebffdebcf7b3f3cda29749a1c082aa9269d28a2132a098139810808bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Calcite</topic><topic>Complex systems</topic><topic>Dependence</topic><topic>Gruneisen parameter</topic><topic>Model testing</topic><topic>Modulus of elasticity</topic><topic>Perturbation theory</topic><topic>Tensors</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romao, Carl P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romao, Carl P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic thermal expansion in flexible materials</atitle><jtitle>Physical review. B</jtitle><date>2017-10-18</date><risdate>2017</risdate><volume>96</volume><issue>13</issue><artnum>134113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.134113</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-10, Vol.96 (13), Article 134113
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2126925873
source American Physical Society Journals
subjects Anisotropy
Calcite
Complex systems
Dependence
Gruneisen parameter
Model testing
Modulus of elasticity
Perturbation theory
Tensors
Thermal expansion
title Anisotropic thermal expansion in flexible materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20thermal%20expansion%20in%20flexible%20materials&rft.jtitle=Physical%20review.%20B&rft.au=Romao,%20Carl%20P.&rft.date=2017-10-18&rft.volume=96&rft.issue=13&rft.artnum=134113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.134113&rft_dat=%3Cproquest_cross%3E2126925873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126925873&rft_id=info:pmid/&rfr_iscdi=true