Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond
We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, th...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-12, Vol.94 (21), Article 214115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Physical review. B |
container_volume | 94 |
creator | Kepesidis, K. V. Lemonde, M.-A. Norambuena, A. Maze, J. R. Rabl, P. |
description | We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available. |
doi_str_mv | 10.1103/PhysRevB.94.214115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126925698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126925698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-888ef24ba42a6cc5b33ba28bcf6132c10d48326972412d4772d031ff3341b1a53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gKeA562ZSfYj3mrxCwqK6Dlks9k2pU1qslvpv7e11tO8A887Aw8h18DGAIzfvi126d1u78dSjBEEQH5GBigKmUlZyPP_nLNLMkppyRiDgsmSyQFppiGsnJ_TzSL44BP9dt3itNzRiQl96pyh0SYbt8FFav3ceWvjofQLJ7dyJvhsq432ZkeN9Z2NiTpPG6fXwTdX5KLVq2RHf3NIPh8fPqbP2ez16WU6mWUGy7zLqqqyLYpaC9SFMXnNea2xqk1bAEcDrBEVx0KWKAAbUZbYMA5ty7mAGnTOh-TmeHcTw1dvU6eWoY9-_1Ih7IuYF7LaU3ikTAwpRduqTXRrHXcKmDoIVSehSgp1FMp_AIHQa8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126925698</pqid></control><display><type>article</type><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><source>American Physical Society Journals</source><creator>Kepesidis, K. V. ; Lemonde, M.-A. ; Norambuena, A. ; Maze, J. R. ; Rabl, P.</creator><creatorcontrib>Kepesidis, K. V. ; Lemonde, M.-A. ; Norambuena, A. ; Maze, J. R. ; Rabl, P.</creatorcontrib><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.214115</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cooling ; Cooling effects ; Diamonds ; Driving conditions ; Laser cooling ; Mechanical systems ; Phonons ; Reservoir engineering ; Silicon ; Strain ; Vacancies</subject><ispartof>Physical review. B, 2016-12, Vol.94 (21), Article 214115</ispartof><rights>Copyright American Physical Society Dec 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-888ef24ba42a6cc5b33ba28bcf6132c10d48326972412d4772d031ff3341b1a53</citedby><cites>FETCH-LOGICAL-c275t-888ef24ba42a6cc5b33ba28bcf6132c10d48326972412d4772d031ff3341b1a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27926,27927</link.rule.ids></links><search><creatorcontrib>Kepesidis, K. V.</creatorcontrib><creatorcontrib>Lemonde, M.-A.</creatorcontrib><creatorcontrib>Norambuena, A.</creatorcontrib><creatorcontrib>Maze, J. R.</creatorcontrib><creatorcontrib>Rabl, P.</creatorcontrib><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><title>Physical review. B</title><description>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</description><subject>Cooling</subject><subject>Cooling effects</subject><subject>Diamonds</subject><subject>Driving conditions</subject><subject>Laser cooling</subject><subject>Mechanical systems</subject><subject>Phonons</subject><subject>Reservoir engineering</subject><subject>Silicon</subject><subject>Strain</subject><subject>Vacancies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGr_gKeA562ZSfYj3mrxCwqK6Dlks9k2pU1qslvpv7e11tO8A887Aw8h18DGAIzfvi126d1u78dSjBEEQH5GBigKmUlZyPP_nLNLMkppyRiDgsmSyQFppiGsnJ_TzSL44BP9dt3itNzRiQl96pyh0SYbt8FFav3ceWvjofQLJ7dyJvhsq432ZkeN9Z2NiTpPG6fXwTdX5KLVq2RHf3NIPh8fPqbP2ez16WU6mWUGy7zLqqqyLYpaC9SFMXnNea2xqk1bAEcDrBEVx0KWKAAbUZbYMA5ty7mAGnTOh-TmeHcTw1dvU6eWoY9-_1Ih7IuYF7LaU3ikTAwpRduqTXRrHXcKmDoIVSehSgp1FMp_AIHQa8Q</recordid><startdate>20161229</startdate><enddate>20161229</enddate><creator>Kepesidis, K. V.</creator><creator>Lemonde, M.-A.</creator><creator>Norambuena, A.</creator><creator>Maze, J. R.</creator><creator>Rabl, P.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161229</creationdate><title>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</title><author>Kepesidis, K. V. ; Lemonde, M.-A. ; Norambuena, A. ; Maze, J. R. ; Rabl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-888ef24ba42a6cc5b33ba28bcf6132c10d48326972412d4772d031ff3341b1a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooling</topic><topic>Cooling effects</topic><topic>Diamonds</topic><topic>Driving conditions</topic><topic>Laser cooling</topic><topic>Mechanical systems</topic><topic>Phonons</topic><topic>Reservoir engineering</topic><topic>Silicon</topic><topic>Strain</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepesidis, K. V.</creatorcontrib><creatorcontrib>Lemonde, M.-A.</creatorcontrib><creatorcontrib>Norambuena, A.</creatorcontrib><creatorcontrib>Maze, J. R.</creatorcontrib><creatorcontrib>Rabl, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepesidis, K. V.</au><au>Lemonde, M.-A.</au><au>Norambuena, A.</au><au>Maze, J. R.</au><au>Rabl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond</atitle><jtitle>Physical review. B</jtitle><date>2016-12-29</date><risdate>2016</risdate><volume>94</volume><issue>21</issue><artnum>214115</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.94.214115</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-12, Vol.94 (21), Article 214115 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2126925698 |
source | American Physical Society Journals |
subjects | Cooling Cooling effects Diamonds Driving conditions Laser cooling Mechanical systems Phonons Reservoir engineering Silicon Strain Vacancies |
title | Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20phonons%20with%20phonons:%20Acoustic%20reservoir%20engineering%20with%20silicon-vacancy%20centers%20in%20diamond&rft.jtitle=Physical%20review.%20B&rft.au=Kepesidis,%20K.%20V.&rft.date=2016-12-29&rft.volume=94&rft.issue=21&rft.artnum=214115&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.214115&rft_dat=%3Cproquest_cross%3E2126925698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126925698&rft_id=info:pmid/&rfr_iscdi=true |