Chebyshev polynomial representation of imaginary-time response functions

Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-08, Vol.98 (7), p.075127
Hauptverfasser: Gull, Emanuel, Iskakov, Sergei, Krivenko, Igor, Rusakov, Alexander A, Zgid, Dominika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 075127
container_title Physical review. B
container_volume 98
creator Gull, Emanuel
Iskakov, Sergei
Krivenko, Igor
Rusakov, Alexander A
Zgid, Dominika
description Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions. In this paper, we explore the representation of Green's functions and self-energies in terms of a series of Chebyshev polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation, which is most commonly used in this context.
doi_str_mv 10.1103/PhysRevB.98.075127
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2126915001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126915001</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-f150c2b7bcd3b89e97643a6e651b6790ebd501892e3e2c3d8b41147ebd6d77613</originalsourceid><addsrcrecordid>eNo9jcFKxDAURYMoOIzzA64Krju-l7RJs9SijjCgiK6HpH21HdqkNu1A_96K4upeLodzGbtG2CKCuH2t5_BGp_utzragUuTqjK14InWstdTn_z2FS7YJ4QgAKEEr0Cu2y2uyc6jpFPW-nZ3vGtNGA_UDBXKjGRvvIl9FTWc-G2eGOR6bjhYg9N4FiqrJFT9MuGIXlWkDbf5yzT4eH97zXbx_eXrO7_ZxjyjGuMIUCm6VLUphM01ayUQYSTJFK5UGsmUKmGlOgnghyswmiIlaZlkqJVGs2c2vtx_810RhPBz9NLjl8sCRS734AcU3UOBRwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126915001</pqid></control><display><type>article</type><title>Chebyshev polynomial representation of imaginary-time response functions</title><source>American Physical Society</source><creator>Gull, Emanuel ; Iskakov, Sergei ; Krivenko, Igor ; Rusakov, Alexander A ; Zgid, Dominika</creator><creatorcontrib>Gull, Emanuel ; Iskakov, Sergei ; Krivenko, Igor ; Rusakov, Alexander A ; Zgid, Dominika</creatorcontrib><description>Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions. In this paper, we explore the representation of Green's functions and self-energies in terms of a series of Chebyshev polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation, which is most commonly used in this context.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.075127</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chebyshev approximation ; Fourier transforms ; Green's functions ; Hamiltonian functions ; Mathematical analysis ; Polynomials ; Quantum statistics ; Representations ; Response functions ; Series expansion ; Statistical mechanics ; Thermal expansion ; Time response</subject><ispartof>Physical review. B, 2018-08, Vol.98 (7), p.075127</ispartof><rights>Copyright American Physical Society Aug 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Iskakov, Sergei</creatorcontrib><creatorcontrib>Krivenko, Igor</creatorcontrib><creatorcontrib>Rusakov, Alexander A</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><title>Chebyshev polynomial representation of imaginary-time response functions</title><title>Physical review. B</title><description>Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions. In this paper, we explore the representation of Green's functions and self-energies in terms of a series of Chebyshev polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation, which is most commonly used in this context.</description><subject>Chebyshev approximation</subject><subject>Fourier transforms</subject><subject>Green's functions</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Quantum statistics</subject><subject>Representations</subject><subject>Response functions</subject><subject>Series expansion</subject><subject>Statistical mechanics</subject><subject>Thermal expansion</subject><subject>Time response</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jcFKxDAURYMoOIzzA64Krju-l7RJs9SijjCgiK6HpH21HdqkNu1A_96K4upeLodzGbtG2CKCuH2t5_BGp_utzragUuTqjK14InWstdTn_z2FS7YJ4QgAKEEr0Cu2y2uyc6jpFPW-nZ3vGtNGA_UDBXKjGRvvIl9FTWc-G2eGOR6bjhYg9N4FiqrJFT9MuGIXlWkDbf5yzT4eH97zXbx_eXrO7_ZxjyjGuMIUCm6VLUphM01ayUQYSTJFK5UGsmUKmGlOgnghyswmiIlaZlkqJVGs2c2vtx_810RhPBz9NLjl8sCRS734AcU3UOBRwA</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Gull, Emanuel</creator><creator>Iskakov, Sergei</creator><creator>Krivenko, Igor</creator><creator>Rusakov, Alexander A</creator><creator>Zgid, Dominika</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180815</creationdate><title>Chebyshev polynomial representation of imaginary-time response functions</title><author>Gull, Emanuel ; Iskakov, Sergei ; Krivenko, Igor ; Rusakov, Alexander A ; Zgid, Dominika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-f150c2b7bcd3b89e97643a6e651b6790ebd501892e3e2c3d8b41147ebd6d77613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chebyshev approximation</topic><topic>Fourier transforms</topic><topic>Green's functions</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Quantum statistics</topic><topic>Representations</topic><topic>Response functions</topic><topic>Series expansion</topic><topic>Statistical mechanics</topic><topic>Thermal expansion</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Iskakov, Sergei</creatorcontrib><creatorcontrib>Krivenko, Igor</creatorcontrib><creatorcontrib>Rusakov, Alexander A</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gull, Emanuel</au><au>Iskakov, Sergei</au><au>Krivenko, Igor</au><au>Rusakov, Alexander A</au><au>Zgid, Dominika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chebyshev polynomial representation of imaginary-time response functions</atitle><jtitle>Physical review. B</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>98</volume><issue>7</issue><spage>075127</spage><pages>075127-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions. In this paper, we explore the representation of Green's functions and self-energies in terms of a series of Chebyshev polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation, which is most commonly used in this context.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.075127</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-08, Vol.98 (7), p.075127
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2126915001
source American Physical Society
subjects Chebyshev approximation
Fourier transforms
Green's functions
Hamiltonian functions
Mathematical analysis
Polynomials
Quantum statistics
Representations
Response functions
Series expansion
Statistical mechanics
Thermal expansion
Time response
title Chebyshev polynomial representation of imaginary-time response functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chebyshev%20polynomial%20representation%20of%20imaginary-time%20response%20functions&rft.jtitle=Physical%20review.%20B&rft.au=Gull,%20Emanuel&rft.date=2018-08-15&rft.volume=98&rft.issue=7&rft.spage=075127&rft.pages=075127-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.075127&rft_dat=%3Cproquest%3E2126915001%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126915001&rft_id=info:pmid/&rfr_iscdi=true