Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice

Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-07, Vol.98 (4), p.045142, Article 045142
Hauptverfasser: Hesselmann, S., Scherer, D. D., Scherer, M. M., Wessel, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 045142
container_title Physical review. B
container_volume 98
creator Hesselmann, S.
Scherer, D. D.
Scherer, M. M.
Wessel, S.
description Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.
doi_str_mv 10.1103/PhysRevB.98.045142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126914888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126914888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeA561vsvnYHG3xCwqK2HNIdhO7pU3WJK3031upepo5DDPMg9A1gSkhUN--rg75ze1nU9VMgXHC6BkaUSZUpZRQ5_-ewyWa5LwGACJASVAjtJzF0FUxdS65DudiisvYhA57XH2ZvcOD6VMfPnD0OA992LicsXdp28eQcQy4rBxexeAObdxavDGl9K27QhfebLKb_OoYLR_u3-dP1eLl8Xl-t6haKnmpiAVqrFWy5dwLyYHWTHEJoKwnlMnWMi64YA3rDBWilt56Zrlhx4tESF-P0c2pd0jxc-dy0eu4S-E4qSmhQhHWNM0xRU-pNsWck_N6SP3WpIMmoH8I6j-CWjX6RLD-BuB-ZI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126914888</pqid></control><display><type>article</type><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><source>American Physical Society Journals</source><creator>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</creator><creatorcontrib>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</creatorcontrib><description>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.045142</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Charge density waves ; Critical point ; Fermi surfaces ; Fermions ; Hamiltonian functions ; Honeycomb construction ; Ising model ; Nesting ; Order parameters ; Patching ; Phase diagrams ; Surface stability ; Unit cell ; Variation</subject><ispartof>Physical review. B, 2018-07, Vol.98 (4), p.045142, Article 045142</ispartof><rights>Copyright American Physical Society Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</citedby><cites>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Hesselmann, S.</creatorcontrib><creatorcontrib>Scherer, D. D.</creatorcontrib><creatorcontrib>Scherer, M. M.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><title>Physical review. B</title><description>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</description><subject>Charge density waves</subject><subject>Critical point</subject><subject>Fermi surfaces</subject><subject>Fermions</subject><subject>Hamiltonian functions</subject><subject>Honeycomb construction</subject><subject>Ising model</subject><subject>Nesting</subject><subject>Order parameters</subject><subject>Patching</subject><subject>Phase diagrams</subject><subject>Surface stability</subject><subject>Unit cell</subject><subject>Variation</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeA561vsvnYHG3xCwqK2HNIdhO7pU3WJK3031upepo5DDPMg9A1gSkhUN--rg75ze1nU9VMgXHC6BkaUSZUpZRQ5_-ewyWa5LwGACJASVAjtJzF0FUxdS65DudiisvYhA57XH2ZvcOD6VMfPnD0OA992LicsXdp28eQcQy4rBxexeAObdxavDGl9K27QhfebLKb_OoYLR_u3-dP1eLl8Xl-t6haKnmpiAVqrFWy5dwLyYHWTHEJoKwnlMnWMi64YA3rDBWilt56Zrlhx4tESF-P0c2pd0jxc-dy0eu4S-E4qSmhQhHWNM0xRU-pNsWck_N6SP3WpIMmoH8I6j-CWjX6RLD-BuB-ZI4</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Hesselmann, S.</creator><creator>Scherer, D. D.</creator><creator>Scherer, M. M.</creator><creator>Wessel, S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180731</creationdate><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><author>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge density waves</topic><topic>Critical point</topic><topic>Fermi surfaces</topic><topic>Fermions</topic><topic>Hamiltonian functions</topic><topic>Honeycomb construction</topic><topic>Ising model</topic><topic>Nesting</topic><topic>Order parameters</topic><topic>Patching</topic><topic>Phase diagrams</topic><topic>Surface stability</topic><topic>Unit cell</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesselmann, S.</creatorcontrib><creatorcontrib>Scherer, D. D.</creatorcontrib><creatorcontrib>Scherer, M. M.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesselmann, S.</au><au>Scherer, D. D.</au><au>Scherer, M. M.</au><au>Wessel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</atitle><jtitle>Physical review. B</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>98</volume><issue>4</issue><spage>045142</spage><pages>045142-</pages><artnum>045142</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.045142</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-07, Vol.98 (4), p.045142, Article 045142
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2126914888
source American Physical Society Journals
subjects Charge density waves
Critical point
Fermi surfaces
Fermions
Hamiltonian functions
Honeycomb construction
Ising model
Nesting
Order parameters
Patching
Phase diagrams
Surface stability
Unit cell
Variation
title Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond-ordered%20states%20and%20f%20-wave%20pairing%20of%20spinless%20fermions%20on%20the%20honeycomb%20lattice&rft.jtitle=Physical%20review.%20B&rft.au=Hesselmann,%20S.&rft.date=2018-07-31&rft.volume=98&rft.issue=4&rft.spage=045142&rft.pages=045142-&rft.artnum=045142&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.045142&rft_dat=%3Cproquest_cross%3E2126914888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126914888&rft_id=info:pmid/&rfr_iscdi=true