Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice
Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-07, Vol.98 (4), p.045142, Article 045142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 045142 |
container_title | Physical review. B |
container_volume | 98 |
creator | Hesselmann, S. Scherer, D. D. Scherer, M. M. Wessel, S. |
description | Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians. |
doi_str_mv | 10.1103/PhysRevB.98.045142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126914888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126914888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeA561vsvnYHG3xCwqK2HNIdhO7pU3WJK3031upepo5DDPMg9A1gSkhUN--rg75ze1nU9VMgXHC6BkaUSZUpZRQ5_-ewyWa5LwGACJASVAjtJzF0FUxdS65DudiisvYhA57XH2ZvcOD6VMfPnD0OA992LicsXdp28eQcQy4rBxexeAObdxavDGl9K27QhfebLKb_OoYLR_u3-dP1eLl8Xl-t6haKnmpiAVqrFWy5dwLyYHWTHEJoKwnlMnWMi64YA3rDBWilt56Zrlhx4tESF-P0c2pd0jxc-dy0eu4S-E4qSmhQhHWNM0xRU-pNsWck_N6SP3WpIMmoH8I6j-CWjX6RLD-BuB-ZI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126914888</pqid></control><display><type>article</type><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><source>American Physical Society Journals</source><creator>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</creator><creatorcontrib>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</creatorcontrib><description>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.045142</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Charge density waves ; Critical point ; Fermi surfaces ; Fermions ; Hamiltonian functions ; Honeycomb construction ; Ising model ; Nesting ; Order parameters ; Patching ; Phase diagrams ; Surface stability ; Unit cell ; Variation</subject><ispartof>Physical review. B, 2018-07, Vol.98 (4), p.045142, Article 045142</ispartof><rights>Copyright American Physical Society Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</citedby><cites>FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Hesselmann, S.</creatorcontrib><creatorcontrib>Scherer, D. D.</creatorcontrib><creatorcontrib>Scherer, M. M.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><title>Physical review. B</title><description>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</description><subject>Charge density waves</subject><subject>Critical point</subject><subject>Fermi surfaces</subject><subject>Fermions</subject><subject>Hamiltonian functions</subject><subject>Honeycomb construction</subject><subject>Ising model</subject><subject>Nesting</subject><subject>Order parameters</subject><subject>Patching</subject><subject>Phase diagrams</subject><subject>Surface stability</subject><subject>Unit cell</subject><subject>Variation</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeA561vsvnYHG3xCwqK2HNIdhO7pU3WJK3031upepo5DDPMg9A1gSkhUN--rg75ze1nU9VMgXHC6BkaUSZUpZRQ5_-ewyWa5LwGACJASVAjtJzF0FUxdS65DudiisvYhA57XH2ZvcOD6VMfPnD0OA992LicsXdp28eQcQy4rBxexeAObdxavDGl9K27QhfebLKb_OoYLR_u3-dP1eLl8Xl-t6haKnmpiAVqrFWy5dwLyYHWTHEJoKwnlMnWMi64YA3rDBWilt56Zrlhx4tESF-P0c2pd0jxc-dy0eu4S-E4qSmhQhHWNM0xRU-pNsWck_N6SP3WpIMmoH8I6j-CWjX6RLD-BuB-ZI4</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Hesselmann, S.</creator><creator>Scherer, D. D.</creator><creator>Scherer, M. M.</creator><creator>Wessel, S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180731</creationdate><title>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</title><author>Hesselmann, S. ; Scherer, D. D. ; Scherer, M. M. ; Wessel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-1b02abb97c55f6750234957009bf1247cb45656484da26637fbf4b5a4142167f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge density waves</topic><topic>Critical point</topic><topic>Fermi surfaces</topic><topic>Fermions</topic><topic>Hamiltonian functions</topic><topic>Honeycomb construction</topic><topic>Ising model</topic><topic>Nesting</topic><topic>Order parameters</topic><topic>Patching</topic><topic>Phase diagrams</topic><topic>Surface stability</topic><topic>Unit cell</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesselmann, S.</creatorcontrib><creatorcontrib>Scherer, D. D.</creatorcontrib><creatorcontrib>Scherer, M. M.</creatorcontrib><creatorcontrib>Wessel, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesselmann, S.</au><au>Scherer, D. D.</au><au>Scherer, M. M.</au><au>Wessel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice</atitle><jtitle>Physical review. B</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>98</volume><issue>4</issue><spage>045142</spage><pages>045142-</pages><artnum>045142</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling, the free Fermi surface becomes electronlike and a superconducting instability with f-wave symmetry is found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.045142</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-07, Vol.98 (4), p.045142, Article 045142 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2126914888 |
source | American Physical Society Journals |
subjects | Charge density waves Critical point Fermi surfaces Fermions Hamiltonian functions Honeycomb construction Ising model Nesting Order parameters Patching Phase diagrams Surface stability Unit cell Variation |
title | Bond-ordered states and f -wave pairing of spinless fermions on the honeycomb lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond-ordered%20states%20and%20f%20-wave%20pairing%20of%20spinless%20fermions%20on%20the%20honeycomb%20lattice&rft.jtitle=Physical%20review.%20B&rft.au=Hesselmann,%20S.&rft.date=2018-07-31&rft.volume=98&rft.issue=4&rft.spage=045142&rft.pages=045142-&rft.artnum=045142&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.045142&rft_dat=%3Cproquest_cross%3E2126914888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126914888&rft_id=info:pmid/&rfr_iscdi=true |