Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames

AbstractThis paper presents ultralow cycle fatigue tests and the calibration of different fracture models for duplex stainless-steel devices of high seismic performance braced frames. Two different geometries of the devices were tested in full scale under 14 cyclic loading protocols up to fracture....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2019-01, Vol.145 (1)
Hauptverfasser: Baiguera, Marco, Vasdravellis, George, Karavasilis, Theodore L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of structural engineering (New York, N.Y.)
container_volume 145
creator Baiguera, Marco
Vasdravellis, George
Karavasilis, Theodore L
description AbstractThis paper presents ultralow cycle fatigue tests and the calibration of different fracture models for duplex stainless-steel devices of high seismic performance braced frames. Two different geometries of the devices were tested in full scale under 14 cyclic loading protocols up to fracture. The imposed protocols consisted of standard, constant-amplitude, and randomly generated loading histories. The test results show that the devices have stable hysteresis, high postyield stiffness, and large energy-dissipation and fracture capacities. Following the tests, two micromechanics-based models, i.e., the cyclic void growth model and the built-in ABAQUS ductile fracture model, were calibrated using monotonic and cyclic tests on circumferentially notched coupons and complementary finite-element simulations. In addition, Coffin-Manson-like relationships were fitted to the results of the constant-amplitude tests of the devices, and the Palmgren-Miner’s rule was used to predict fracture of the devices under the randomly generated loading protocols. Comparisons of the experimental and numerical results show that the calibrated models can predict ductile fracture of the devices due to ultralow cycle fatigue with acceptable accuracy.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0002243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2126875633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126875633</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-399c76e90fe6faaeaa0067663fcac92b8023f3921262f90f5a36034993f440ca3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxDxZsYJHixIkTsyuFUqQikFIkdtbgjourNCl2wuMP-GwSWmDFaqTRPXc0h5CjkPVDJsKzk0E-vDrNp_1QxjxI4vCxzxiLophvkd7vbpv0WMp5IOM42SV73i_aUJqEWY98PhS1g6J6o8MPXSAdQW3nDdIp-tpTKGd05EDXjUN673BmdW2rkt5WMyw8NZWjl82qwHea12DLAr0P8hqxoJf4ajV6Whk6tvNnmqP1S6vpPbqWWkKpkV60zfh9YIn-gOwYKDwebuY-eRhdTYfjYHJ3fTMcTALgWVYHXEqdCpTMoDAACMCYSIXgRoOW0VPGIm64jMJIRKZNJcAF47GU3MQx08D3yfG6d-Wql6b9Ui2qxpXtSdVBWZoIztvU-TqlXeW9Q6NWzi7BfaiQqc68Up15lU9VZ1l1ltXGfAuLNQxe41_9D_k_-AVRsolE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126875633</pqid></control><display><type>article</type><title>Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Baiguera, Marco ; Vasdravellis, George ; Karavasilis, Theodore L</creator><creatorcontrib>Baiguera, Marco ; Vasdravellis, George ; Karavasilis, Theodore L</creatorcontrib><description>AbstractThis paper presents ultralow cycle fatigue tests and the calibration of different fracture models for duplex stainless-steel devices of high seismic performance braced frames. Two different geometries of the devices were tested in full scale under 14 cyclic loading protocols up to fracture. The imposed protocols consisted of standard, constant-amplitude, and randomly generated loading histories. The test results show that the devices have stable hysteresis, high postyield stiffness, and large energy-dissipation and fracture capacities. Following the tests, two micromechanics-based models, i.e., the cyclic void growth model and the built-in ABAQUS ductile fracture model, were calibrated using monotonic and cyclic tests on circumferentially notched coupons and complementary finite-element simulations. In addition, Coffin-Manson-like relationships were fitted to the results of the constant-amplitude tests of the devices, and the Palmgren-Miner’s rule was used to predict fracture of the devices under the randomly generated loading protocols. Comparisons of the experimental and numerical results show that the calibrated models can predict ductile fracture of the devices due to ultralow cycle fatigue with acceptable accuracy.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0002243</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Amplitudes ; Calibration ; Computer simulation ; Crack propagation ; Cyclic loads ; Cyclic testing ; Devices ; Ductile fracture ; Duplex stainless steels ; Economic models ; Energy dissipation ; Fatigue failure ; Fatigue tests ; Finite element method ; Frames ; Mathematical models ; Micromechanics ; Seismic engineering ; Seismic response ; Stiffness ; Structural engineering ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-399c76e90fe6faaeaa0067663fcac92b8023f3921262f90f5a36034993f440ca3</citedby><cites>FETCH-LOGICAL-a388t-399c76e90fe6faaeaa0067663fcac92b8023f3921262f90f5a36034993f440ca3</cites><orcidid>0000-0002-7910-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0002243$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0002243$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Baiguera, Marco</creatorcontrib><creatorcontrib>Vasdravellis, George</creatorcontrib><creatorcontrib>Karavasilis, Theodore L</creatorcontrib><title>Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractThis paper presents ultralow cycle fatigue tests and the calibration of different fracture models for duplex stainless-steel devices of high seismic performance braced frames. Two different geometries of the devices were tested in full scale under 14 cyclic loading protocols up to fracture. The imposed protocols consisted of standard, constant-amplitude, and randomly generated loading histories. The test results show that the devices have stable hysteresis, high postyield stiffness, and large energy-dissipation and fracture capacities. Following the tests, two micromechanics-based models, i.e., the cyclic void growth model and the built-in ABAQUS ductile fracture model, were calibrated using monotonic and cyclic tests on circumferentially notched coupons and complementary finite-element simulations. In addition, Coffin-Manson-like relationships were fitted to the results of the constant-amplitude tests of the devices, and the Palmgren-Miner’s rule was used to predict fracture of the devices under the randomly generated loading protocols. Comparisons of the experimental and numerical results show that the calibrated models can predict ductile fracture of the devices due to ultralow cycle fatigue with acceptable accuracy.</description><subject>Amplitudes</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Cyclic testing</subject><subject>Devices</subject><subject>Ductile fracture</subject><subject>Duplex stainless steels</subject><subject>Economic models</subject><subject>Energy dissipation</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Finite element method</subject><subject>Frames</subject><subject>Mathematical models</subject><subject>Micromechanics</subject><subject>Seismic engineering</subject><subject>Seismic response</subject><subject>Stiffness</subject><subject>Structural engineering</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxDxZsYJHixIkTsyuFUqQikFIkdtbgjourNCl2wuMP-GwSWmDFaqTRPXc0h5CjkPVDJsKzk0E-vDrNp_1QxjxI4vCxzxiLophvkd7vbpv0WMp5IOM42SV73i_aUJqEWY98PhS1g6J6o8MPXSAdQW3nDdIp-tpTKGd05EDXjUN673BmdW2rkt5WMyw8NZWjl82qwHea12DLAr0P8hqxoJf4ajV6Whk6tvNnmqP1S6vpPbqWWkKpkV60zfh9YIn-gOwYKDwebuY-eRhdTYfjYHJ3fTMcTALgWVYHXEqdCpTMoDAACMCYSIXgRoOW0VPGIm64jMJIRKZNJcAF47GU3MQx08D3yfG6d-Wql6b9Ui2qxpXtSdVBWZoIztvU-TqlXeW9Q6NWzi7BfaiQqc68Up15lU9VZ1l1ltXGfAuLNQxe41_9D_k_-AVRsolE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Baiguera, Marco</creator><creator>Vasdravellis, George</creator><creator>Karavasilis, Theodore L</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7910-8190</orcidid></search><sort><creationdate>20190101</creationdate><title>Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames</title><author>Baiguera, Marco ; Vasdravellis, George ; Karavasilis, Theodore L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-399c76e90fe6faaeaa0067663fcac92b8023f3921262f90f5a36034993f440ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Cyclic testing</topic><topic>Devices</topic><topic>Ductile fracture</topic><topic>Duplex stainless steels</topic><topic>Economic models</topic><topic>Energy dissipation</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Finite element method</topic><topic>Frames</topic><topic>Mathematical models</topic><topic>Micromechanics</topic><topic>Seismic engineering</topic><topic>Seismic response</topic><topic>Stiffness</topic><topic>Structural engineering</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baiguera, Marco</creatorcontrib><creatorcontrib>Vasdravellis, George</creatorcontrib><creatorcontrib>Karavasilis, Theodore L</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baiguera, Marco</au><au>Vasdravellis, George</au><au>Karavasilis, Theodore L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>145</volume><issue>1</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractThis paper presents ultralow cycle fatigue tests and the calibration of different fracture models for duplex stainless-steel devices of high seismic performance braced frames. Two different geometries of the devices were tested in full scale under 14 cyclic loading protocols up to fracture. The imposed protocols consisted of standard, constant-amplitude, and randomly generated loading histories. The test results show that the devices have stable hysteresis, high postyield stiffness, and large energy-dissipation and fracture capacities. Following the tests, two micromechanics-based models, i.e., the cyclic void growth model and the built-in ABAQUS ductile fracture model, were calibrated using monotonic and cyclic tests on circumferentially notched coupons and complementary finite-element simulations. In addition, Coffin-Manson-like relationships were fitted to the results of the constant-amplitude tests of the devices, and the Palmgren-Miner’s rule was used to predict fracture of the devices under the randomly generated loading protocols. Comparisons of the experimental and numerical results show that the calibrated models can predict ductile fracture of the devices due to ultralow cycle fatigue with acceptable accuracy.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0002243</doi><orcidid>https://orcid.org/0000-0002-7910-8190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2019-01, Vol.145 (1)
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_journals_2126875633
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Amplitudes
Calibration
Computer simulation
Crack propagation
Cyclic loads
Cyclic testing
Devices
Ductile fracture
Duplex stainless steels
Economic models
Energy dissipation
Fatigue failure
Fatigue tests
Finite element method
Frames
Mathematical models
Micromechanics
Seismic engineering
Seismic response
Stiffness
Structural engineering
Technical Papers
title Ultralow Cycle Fatigue Tests and Fracture Prediction Models for Duplex Stainless-Steel Devices of High Seismic Performance Braced Frames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Cycle%20Fatigue%20Tests%20and%20Fracture%20Prediction%20Models%20for%20Duplex%20Stainless-Steel%20Devices%20of%20High%20Seismic%20Performance%20Braced%20Frames&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Baiguera,%20Marco&rft.date=2019-01-01&rft.volume=145&rft.issue=1&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0002243&rft_dat=%3Cproquest_cross%3E2126875633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126875633&rft_id=info:pmid/&rfr_iscdi=true