Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production

Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2019, Vol.103 (1), p.239-250
Hauptverfasser: Liu, Chun-Li, Bi, Hao-Ran, Bai, Zhonghu, Fan, Li-Hai, Tan, Tian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 239
container_title Applied microbiology and biotechnology
container_volume 103
creator Liu, Chun-Li
Bi, Hao-Ran
Bai, Zhonghu
Fan, Li-Hai
Tan, Tian-Wei
description Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase ( mvaE ) and MVA synthase ( mvaS ) from Enterococcus faecalis ( E. faecalis ); MVA kinase ( mvk ) derived from Methanosarcina mazei ( M. mazei ); and phosphomevalonate kinase ( pmk ), diphosphomevalonate decarboxylase ( mvaD ), and isopentenyl diphosphate isomerase ( idi ) from Streptococcus pneumoniae ( S. pneumoniae ) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli ( E. coli ). Together with a codon-optimized isoprene synthase ( ispS ) from Populus alba ( P. alba ), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.
doi_str_mv 10.1007/s00253-018-9472-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2126732441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A567773970</galeid><sourcerecordid>A567773970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-6bc9ee7d3f3129121b11fb369b4f75c88ce6fd67fd42e0d2e0d8e4fba9f5912a3</originalsourceid><addsrcrecordid>eNp1kEtP7SAYRYm5Ro-PH-DkhuSOq7wKZWjM8ZGYONExUgrnYFqo0Gr899Icr44ckG-y9t5kAXCG0TlGSFxkhEhNK4SbSjJBKrkHVphRUiGO2R-wQljUlahlcwiOcn5BCJOG8wNwSBEVjAu2As_rsPHB2uTDBurQwUEHP869nnwMMDqo4WDfdB-Dniwc9bR91x_QB7jOZltSZus1NLH30MUEfY5jsqGAKXazWTpOwL7TfbanX_cYPF2vH69uq_uHm7ury_vKMCqmirdGWis66igmEhPcYuxaymXLnKhN0xjLXceF6xixqFteY5lrtXR1wTU9Bv92vWX6dbZ5Ui9xTqFMKoIJF5Qwhn-oje6t8sHFKWkz-GzUZc2FEFQKVCi8o0yKOSfr1Jj8oNOHwkgt5tXOvCrm1WJeyZL5-7U_t4PtvhP_VReA7IA8LrJt-vng762fG6yOlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126732441</pqid></control><display><type>article</type><title>Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Chun-Li ; Bi, Hao-Ran ; Bai, Zhonghu ; Fan, Li-Hai ; Tan, Tian-Wei</creator><creatorcontrib>Liu, Chun-Li ; Bi, Hao-Ran ; Bai, Zhonghu ; Fan, Li-Hai ; Tan, Tian-Wei</creatorcontrib><description>Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase ( mvaE ) and MVA synthase ( mvaS ) from Enterococcus faecalis ( E. faecalis ); MVA kinase ( mvk ) derived from Methanosarcina mazei ( M. mazei ); and phosphomevalonate kinase ( pmk ), diphosphomevalonate decarboxylase ( mvaD ), and isopentenyl diphosphate isomerase ( idi ) from Streptococcus pneumoniae ( S. pneumoniae ) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli ( E. coli ). Together with a codon-optimized isoprene synthase ( ispS ) from Populus alba ( P. alba ), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9472-9</identifier><identifier>PMID: 30374674</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air pollution ; Bacteria ; Biological activity ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; C5 hydrocarbons ; Coenzyme A ; Diphosphomevalonate decarboxylase ; Dodecane ; E coli ; Elastomers ; Escherichia coli ; Fermentation ; Fossil fuels ; Gene expression ; Genes ; Genetic aspects ; Genetic engineering ; Industrial applications ; Isopentenyl diphosphate ; Isoprene ; Kinases ; Life Sciences ; Metabolic flux ; Metabolites ; Methods ; Mevalonate pathway ; Mevalonic acid ; Microbial genetic engineering ; Microbial Genetics and Genomics ; Microbiology ; Petrochemicals ; Petrochemicals industry ; Phosphomevalonate kinase ; Physiological aspects ; Production processes ; Rubber ; Streptococcus infections ; Streptococcus pneumoniae ; Synthetic rubber ; Thiolase ; Toxicity</subject><ispartof>Applied microbiology and biotechnology, 2019, Vol.103 (1), p.239-250</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-6bc9ee7d3f3129121b11fb369b4f75c88ce6fd67fd42e0d2e0d8e4fba9f5912a3</citedby><cites>FETCH-LOGICAL-c437t-6bc9ee7d3f3129121b11fb369b4f75c88ce6fd67fd42e0d2e0d8e4fba9f5912a3</cites><orcidid>0000-0002-3107-1843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-018-9472-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-018-9472-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30374674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chun-Li</creatorcontrib><creatorcontrib>Bi, Hao-Ran</creatorcontrib><creatorcontrib>Bai, Zhonghu</creatorcontrib><creatorcontrib>Fan, Li-Hai</creatorcontrib><creatorcontrib>Tan, Tian-Wei</creatorcontrib><title>Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase ( mvaE ) and MVA synthase ( mvaS ) from Enterococcus faecalis ( E. faecalis ); MVA kinase ( mvk ) derived from Methanosarcina mazei ( M. mazei ); and phosphomevalonate kinase ( pmk ), diphosphomevalonate decarboxylase ( mvaD ), and isopentenyl diphosphate isomerase ( idi ) from Streptococcus pneumoniae ( S. pneumoniae ) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli ( E. coli ). Together with a codon-optimized isoprene synthase ( ispS ) from Populus alba ( P. alba ), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.</description><subject>Air pollution</subject><subject>Bacteria</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>C5 hydrocarbons</subject><subject>Coenzyme A</subject><subject>Diphosphomevalonate decarboxylase</subject><subject>Dodecane</subject><subject>E coli</subject><subject>Elastomers</subject><subject>Escherichia coli</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Industrial applications</subject><subject>Isopentenyl diphosphate</subject><subject>Isoprene</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Metabolic flux</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Microbial genetic engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Petrochemicals</subject><subject>Petrochemicals industry</subject><subject>Phosphomevalonate kinase</subject><subject>Physiological aspects</subject><subject>Production processes</subject><subject>Rubber</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae</subject><subject>Synthetic rubber</subject><subject>Thiolase</subject><subject>Toxicity</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtP7SAYRYm5Ro-PH-DkhuSOq7wKZWjM8ZGYONExUgrnYFqo0Gr899Icr44ckG-y9t5kAXCG0TlGSFxkhEhNK4SbSjJBKrkHVphRUiGO2R-wQljUlahlcwiOcn5BCJOG8wNwSBEVjAu2As_rsPHB2uTDBurQwUEHP869nnwMMDqo4WDfdB-Dniwc9bR91x_QB7jOZltSZus1NLH30MUEfY5jsqGAKXazWTpOwL7TfbanX_cYPF2vH69uq_uHm7ury_vKMCqmirdGWis66igmEhPcYuxaymXLnKhN0xjLXceF6xixqFteY5lrtXR1wTU9Bv92vWX6dbZ5Ui9xTqFMKoIJF5Qwhn-oje6t8sHFKWkz-GzUZc2FEFQKVCi8o0yKOSfr1Jj8oNOHwkgt5tXOvCrm1WJeyZL5-7U_t4PtvhP_VReA7IA8LrJt-vng762fG6yOlQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Liu, Chun-Li</creator><creator>Bi, Hao-Ran</creator><creator>Bai, Zhonghu</creator><creator>Fan, Li-Hai</creator><creator>Tan, Tian-Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3107-1843</orcidid></search><sort><creationdate>2019</creationdate><title>Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production</title><author>Liu, Chun-Li ; Bi, Hao-Ran ; Bai, Zhonghu ; Fan, Li-Hai ; Tan, Tian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-6bc9ee7d3f3129121b11fb369b4f75c88ce6fd67fd42e0d2e0d8e4fba9f5912a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air pollution</topic><topic>Bacteria</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>C5 hydrocarbons</topic><topic>Coenzyme A</topic><topic>Diphosphomevalonate decarboxylase</topic><topic>Dodecane</topic><topic>E coli</topic><topic>Elastomers</topic><topic>Escherichia coli</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Industrial applications</topic><topic>Isopentenyl diphosphate</topic><topic>Isoprene</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Metabolic flux</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Microbial genetic engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Petrochemicals</topic><topic>Petrochemicals industry</topic><topic>Phosphomevalonate kinase</topic><topic>Physiological aspects</topic><topic>Production processes</topic><topic>Rubber</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae</topic><topic>Synthetic rubber</topic><topic>Thiolase</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chun-Li</creatorcontrib><creatorcontrib>Bi, Hao-Ran</creatorcontrib><creatorcontrib>Bai, Zhonghu</creatorcontrib><creatorcontrib>Fan, Li-Hai</creatorcontrib><creatorcontrib>Tan, Tian-Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chun-Li</au><au>Bi, Hao-Ran</au><au>Bai, Zhonghu</au><au>Fan, Li-Hai</au><au>Tan, Tian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019</date><risdate>2019</risdate><volume>103</volume><issue>1</issue><spage>239</spage><epage>250</epage><pages>239-250</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase ( mvaE ) and MVA synthase ( mvaS ) from Enterococcus faecalis ( E. faecalis ); MVA kinase ( mvk ) derived from Methanosarcina mazei ( M. mazei ); and phosphomevalonate kinase ( pmk ), diphosphomevalonate decarboxylase ( mvaD ), and isopentenyl diphosphate isomerase ( idi ) from Streptococcus pneumoniae ( S. pneumoniae ) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli ( E. coli ). Together with a codon-optimized isoprene synthase ( ispS ) from Populus alba ( P. alba ), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30374674</pmid><doi>10.1007/s00253-018-9472-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3107-1843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2019, Vol.103 (1), p.239-250
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2126732441
source Springer Nature - Complete Springer Journals
subjects Air pollution
Bacteria
Biological activity
Biomedical and Life Sciences
Biosynthesis
Biotechnological Products and Process Engineering
Biotechnology
C5 hydrocarbons
Coenzyme A
Diphosphomevalonate decarboxylase
Dodecane
E coli
Elastomers
Escherichia coli
Fermentation
Fossil fuels
Gene expression
Genes
Genetic aspects
Genetic engineering
Industrial applications
Isopentenyl diphosphate
Isoprene
Kinases
Life Sciences
Metabolic flux
Metabolites
Methods
Mevalonate pathway
Mevalonic acid
Microbial genetic engineering
Microbial Genetics and Genomics
Microbiology
Petrochemicals
Petrochemicals industry
Phosphomevalonate kinase
Physiological aspects
Production processes
Rubber
Streptococcus infections
Streptococcus pneumoniae
Synthetic rubber
Thiolase
Toxicity
title Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T20%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20and%20manipulation%20of%20a%20mevalonate%20pathway%20in%20Escherichia%20coli%20for%20isoprene%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Liu,%20Chun-Li&rft.date=2019&rft.volume=103&rft.issue=1&rft.spage=239&rft.epage=250&rft.pages=239-250&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9472-9&rft_dat=%3Cgale_proqu%3EA567773970%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126732441&rft_id=info:pmid/30374674&rft_galeid=A567773970&rfr_iscdi=true