Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells
We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorber...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2018-11, Vol.8 (6), p.1868-1874 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1874 |
---|---|
container_issue | 6 |
container_start_page | 1868 |
container_title | IEEE journal of photovoltaics |
container_volume | 8 |
creator | Pawlowski, Marek Maciaszek, Marek Zabierowski, Pawel Drobiazg, Tomasz Barreau, Nicolas |
description | We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics. |
doi_str_mv | 10.1109/JPHOTOV.2018.2870527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2126664003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8478761</ieee_id><sourcerecordid>2126664003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-91a9bc910ca175afbc6a6d2a3a8ab6f8275cfbb3dea40689b986c7310d8a4d43</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhBdRsNT-Aj0seFEwdT-S3c1RY20jhSoNXjyEN5t3MSVNYj4O_femVOcyc3gYZgi54WzOOQsf395Xm2TzOReMm7kwmgVCn5GJ4IHypM_k-X-Whl-SWdft2CjFAqX8CflKcN9gC_3QIn3BBqscK4u0drT_RhpXPbYVlPRjgKof9nThXGGLETkckWi4i6uHJdxvUXjP0GFOt3UJLY2wLLsrcuGg7HD251OSvC6SaOWtN8s4elp7Beem90IOYWZDzixwHYDLrAKVC5BgIFPOCB1Yl2UyR_CZMmEWGmW15Cw34Oe-nJLbU23T1j8Ddn26q4fj6C4VXKjxJmNypK5PVIGIadMWe2gPqfG10YrLX5BWXrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126664003</pqid></control><display><type>article</type><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</creator><creatorcontrib>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</creatorcontrib><description>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2870527</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><![CDATA[Absorbers ; Charge carrier processes ; Collection ; Copper indium gallium selenides ; Cu(In ; Defects ; Evaluation ; Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS ; Ionization ; Parameter estimation ; Photonic band gap ; Photovoltaic cells ; Quantum efficiency ; Radiative recombination ; recombination ; Solar cells ; Temperature ; Temperature dependence ; Wavelength measurement]]></subject><ispartof>IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1868-1874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1658-9799 ; 0000-0003-3354-6926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8478761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8478761$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawlowski, Marek</creatorcontrib><creatorcontrib>Maciaszek, Marek</creatorcontrib><creatorcontrib>Zabierowski, Pawel</creatorcontrib><creatorcontrib>Drobiazg, Tomasz</creatorcontrib><creatorcontrib>Barreau, Nicolas</creatorcontrib><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</description><subject>Absorbers</subject><subject>Charge carrier processes</subject><subject>Collection</subject><subject>Copper indium gallium selenides</subject><subject>Cu(In</subject><subject>Defects</subject><subject>Evaluation</subject><subject><![CDATA[Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS]]></subject><subject>Ionization</subject><subject>Parameter estimation</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Radiative recombination</subject><subject>recombination</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Wavelength measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo1j01Lw0AYhBdRsNT-Aj0seFEwdT-S3c1RY20jhSoNXjyEN5t3MSVNYj4O_femVOcyc3gYZgi54WzOOQsf395Xm2TzOReMm7kwmgVCn5GJ4IHypM_k-X-Whl-SWdft2CjFAqX8CflKcN9gC_3QIn3BBqscK4u0drT_RhpXPbYVlPRjgKof9nThXGGLETkckWi4i6uHJdxvUXjP0GFOt3UJLY2wLLsrcuGg7HD251OSvC6SaOWtN8s4elp7Beem90IOYWZDzixwHYDLrAKVC5BgIFPOCB1Yl2UyR_CZMmEWGmW15Cw34Oe-nJLbU23T1j8Ddn26q4fj6C4VXKjxJmNypK5PVIGIadMWe2gPqfG10YrLX5BWXrA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Pawlowski, Marek</creator><creator>Maciaszek, Marek</creator><creator>Zabierowski, Pawel</creator><creator>Drobiazg, Tomasz</creator><creator>Barreau, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1658-9799</orcidid><orcidid>https://orcid.org/0000-0003-3354-6926</orcidid></search><sort><creationdate>20181101</creationdate><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><author>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-91a9bc910ca175afbc6a6d2a3a8ab6f8275cfbb3dea40689b986c7310d8a4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Charge carrier processes</topic><topic>Collection</topic><topic>Copper indium gallium selenides</topic><topic>Cu(In</topic><topic>Defects</topic><topic>Evaluation</topic><topic><![CDATA[Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS]]></topic><topic>Ionization</topic><topic>Parameter estimation</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Radiative recombination</topic><topic>recombination</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawlowski, Marek</creatorcontrib><creatorcontrib>Maciaszek, Marek</creatorcontrib><creatorcontrib>Zabierowski, Pawel</creatorcontrib><creatorcontrib>Drobiazg, Tomasz</creatorcontrib><creatorcontrib>Barreau, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawlowski, Marek</au><au>Maciaszek, Marek</au><au>Zabierowski, Pawel</au><au>Drobiazg, Tomasz</au><au>Barreau, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1868</spage><epage>1874</epage><pages>1868-1874</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2870527</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1658-9799</orcidid><orcidid>https://orcid.org/0000-0003-3354-6926</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1868-1874 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_2126664003 |
source | IEEE Electronic Library (IEL) |
subjects | Absorbers Charge carrier processes Collection Copper indium gallium selenides Cu(In Defects Evaluation Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS Ionization Parameter estimation Photonic band gap Photovoltaic cells Quantum efficiency Radiative recombination recombination Solar cells Temperature Temperature dependence Wavelength measurement |
title | Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependence%20of%20the%20Internal%20Quantum%20Efficiency%20of%20Cu(In,Ga)Se2-Based%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Pawlowski,%20Marek&rft.date=2018-11-01&rft.volume=8&rft.issue=6&rft.spage=1868&rft.epage=1874&rft.pages=1868-1874&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2870527&rft_dat=%3Cproquest_RIE%3E2126664003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126664003&rft_id=info:pmid/&rft_ieee_id=8478761&rfr_iscdi=true |