Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells

We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2018-11, Vol.8 (6), p.1868-1874
Hauptverfasser: Pawlowski, Marek, Maciaszek, Marek, Zabierowski, Pawel, Drobiazg, Tomasz, Barreau, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1874
container_issue 6
container_start_page 1868
container_title IEEE journal of photovoltaics
container_volume 8
creator Pawlowski, Marek
Maciaszek, Marek
Zabierowski, Pawel
Drobiazg, Tomasz
Barreau, Nicolas
description We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.
doi_str_mv 10.1109/JPHOTOV.2018.2870527
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2126664003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8478761</ieee_id><sourcerecordid>2126664003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-91a9bc910ca175afbc6a6d2a3a8ab6f8275cfbb3dea40689b986c7310d8a4d43</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhBdRsNT-Aj0seFEwdT-S3c1RY20jhSoNXjyEN5t3MSVNYj4O_femVOcyc3gYZgi54WzOOQsf395Xm2TzOReMm7kwmgVCn5GJ4IHypM_k-X-Whl-SWdft2CjFAqX8CflKcN9gC_3QIn3BBqscK4u0drT_RhpXPbYVlPRjgKof9nThXGGLETkckWi4i6uHJdxvUXjP0GFOt3UJLY2wLLsrcuGg7HD251OSvC6SaOWtN8s4elp7Beem90IOYWZDzixwHYDLrAKVC5BgIFPOCB1Yl2UyR_CZMmEWGmW15Cw34Oe-nJLbU23T1j8Ddn26q4fj6C4VXKjxJmNypK5PVIGIadMWe2gPqfG10YrLX5BWXrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126664003</pqid></control><display><type>article</type><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</creator><creatorcontrib>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</creatorcontrib><description>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2870527</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><![CDATA[Absorbers ; Charge carrier processes ; Collection ; Copper indium gallium selenides ; Cu(In ; Defects ; Evaluation ; Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS ; Ionization ; Parameter estimation ; Photonic band gap ; Photovoltaic cells ; Quantum efficiency ; Radiative recombination ; recombination ; Solar cells ; Temperature ; Temperature dependence ; Wavelength measurement]]></subject><ispartof>IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1868-1874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1658-9799 ; 0000-0003-3354-6926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8478761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8478761$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawlowski, Marek</creatorcontrib><creatorcontrib>Maciaszek, Marek</creatorcontrib><creatorcontrib>Zabierowski, Pawel</creatorcontrib><creatorcontrib>Drobiazg, Tomasz</creatorcontrib><creatorcontrib>Barreau, Nicolas</creatorcontrib><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</description><subject>Absorbers</subject><subject>Charge carrier processes</subject><subject>Collection</subject><subject>Copper indium gallium selenides</subject><subject>Cu(In</subject><subject>Defects</subject><subject>Evaluation</subject><subject><![CDATA[Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS]]></subject><subject>Ionization</subject><subject>Parameter estimation</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Radiative recombination</subject><subject>recombination</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Wavelength measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo1j01Lw0AYhBdRsNT-Aj0seFEwdT-S3c1RY20jhSoNXjyEN5t3MSVNYj4O_femVOcyc3gYZgi54WzOOQsf395Xm2TzOReMm7kwmgVCn5GJ4IHypM_k-X-Whl-SWdft2CjFAqX8CflKcN9gC_3QIn3BBqscK4u0drT_RhpXPbYVlPRjgKof9nThXGGLETkckWi4i6uHJdxvUXjP0GFOt3UJLY2wLLsrcuGg7HD251OSvC6SaOWtN8s4elp7Beem90IOYWZDzixwHYDLrAKVC5BgIFPOCB1Yl2UyR_CZMmEWGmW15Cw34Oe-nJLbU23T1j8Ddn26q4fj6C4VXKjxJmNypK5PVIGIadMWe2gPqfG10YrLX5BWXrA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Pawlowski, Marek</creator><creator>Maciaszek, Marek</creator><creator>Zabierowski, Pawel</creator><creator>Drobiazg, Tomasz</creator><creator>Barreau, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1658-9799</orcidid><orcidid>https://orcid.org/0000-0003-3354-6926</orcidid></search><sort><creationdate>20181101</creationdate><title>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</title><author>Pawlowski, Marek ; Maciaszek, Marek ; Zabierowski, Pawel ; Drobiazg, Tomasz ; Barreau, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-91a9bc910ca175afbc6a6d2a3a8ab6f8275cfbb3dea40689b986c7310d8a4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Charge carrier processes</topic><topic>Collection</topic><topic>Copper indium gallium selenides</topic><topic>Cu(In</topic><topic>Defects</topic><topic>Evaluation</topic><topic><![CDATA[Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS]]></topic><topic>Ionization</topic><topic>Parameter estimation</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Radiative recombination</topic><topic>recombination</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawlowski, Marek</creatorcontrib><creatorcontrib>Maciaszek, Marek</creatorcontrib><creatorcontrib>Zabierowski, Pawel</creatorcontrib><creatorcontrib>Drobiazg, Tomasz</creatorcontrib><creatorcontrib>Barreau, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawlowski, Marek</au><au>Maciaszek, Marek</au><au>Zabierowski, Pawel</au><au>Drobiazg, Tomasz</au><au>Barreau, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1868</spage><epage>1874</epage><pages>1868-1874</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>We measured the temperature-dependent internal quantum efficiency (IQE) of Cu(In,Ga)Se 2 -based (CIGS) solar cells. The largest differences in IQE spectra measured between 100 and 300 K were observed in the wavelength range, corresponding to the light absorbed exclusively in the CIGS layer. Absorbers in the investigated cells were grown using a one-stage process. Since all elements are supplied at a constant rate, the obtained layers are free of the band gap grading, therefore collection in the bulk of the layer is not affected by a quasi-electrical field. This allows us to discuss temperature changes in collection solely in terms of recombination. We associate the change in IQE with recombination via defects present in the bulk of absorber. The two cases of donor and acceptor defects are discussed. Using SCAPS software and basic handbook formulas that describe the emission and capture rates of carriers, we estimate a range of basic parameters of the possible bulk defects in CIGS that are responsible for the temperature change of IQE spectra. Our results suggest that IQE may be controlled by shallow defects of ionization energy of 45 and 60 meV for the donor and acceptor cases, respectively. We calculate IQE spectra at different temperatures. The temperature change of simulated spectra reproduces the same tendency as experimental characteristics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2870527</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1658-9799</orcidid><orcidid>https://orcid.org/0000-0003-3354-6926</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1868-1874
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_2126664003
source IEEE Electronic Library (IEL)
subjects Absorbers
Charge carrier processes
Collection
Copper indium gallium selenides
Cu(In
Defects
Evaluation
Ga)Se<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> (CIGS
Ionization
Parameter estimation
Photonic band gap
Photovoltaic cells
Quantum efficiency
Radiative recombination
recombination
Solar cells
Temperature
Temperature dependence
Wavelength measurement
title Temperature Dependence of the Internal Quantum Efficiency of Cu(In,Ga)Se2-Based Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependence%20of%20the%20Internal%20Quantum%20Efficiency%20of%20Cu(In,Ga)Se2-Based%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Pawlowski,%20Marek&rft.date=2018-11-01&rft.volume=8&rft.issue=6&rft.spage=1868&rft.epage=1874&rft.pages=1868-1874&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2870527&rft_dat=%3Cproquest_RIE%3E2126664003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126664003&rft_id=info:pmid/&rft_ieee_id=8478761&rfr_iscdi=true